Efeitos da Capacidade Big Data na Manufatura Sustentável e Economia Circular nas Indústrias Brasileiras
PDF (English)

Palavras-chave

Teoria baseada em recursos
capacidade de big data
fabricação sustentável
economia circular

Como Citar

Klein, L., & Sano Guilhem, A. P. (2024). Efeitos da Capacidade Big Data na Manufatura Sustentável e Economia Circular nas Indústrias Brasileiras. RBGN - Revista Brasileira De Gestão De Negócios, 26(01). https://doi.org/10.7819/rbgn.v26i01.4250

Resumo

Objetivo – O objetivo é analisar a relação da capacidade de Análise de Big Data (ABD) no desenvolvimento da manufatura sustentável e da economia circular de indústrias brasileiras. 

Referencial Teórico – A construção da capacidade de ABD, segundo a Teoria Baseada em Recursos, é estabelecida pela implementação, integração e processamento dos recursos de big data. Argumenta-se que a capacidade ABD pode contribuir para o desenvolvimento sustentável nas indústrias a partir dos dados coletados, além de influenciar o desenvolvimento da economia circular (EC).

Metodologia – A pesquisa possui caráter descritivo, quantitativo e foi operacionalizada por meio de uma survey com os funcionários de indústrias brasileiras que utilizam big data. O teste das hipóteses foi realizado por meio de Modelagem de Equações Estruturais.

Resultados – A capacidade de ABD possui uma relação positiva e significante com a manufatura sustentável e economia circular (EC). A manufatura sustentável é uma mediadora complementar entre a capacidade de ABD e a EC.

Contribuições – O estudo fornece conhecimento acerca da interação entre ABD e o desenvolvimento de práticas sustentáveis e circulares nas indústrias brasileiras, possibilitando incentivos para mudanças nas empresas manufatureiras, que podem suceder na redução das pressões sociais, devido à escassez de recursos, fabricação sustentável e incerteza da cadeia de suprimentos.

Originalidade – A Pesquisa demostra que a capacidade de Análise de Big Data contribui para o desenvolvimento da manufatura sustentável, fornecendo insights sobre práticas que abrangem as esferas social, econômica e ambiental.

Palavras-chave - Teoria Baseada em Recursos; capacidade de Big Data; Manufatura Sustentável; Economia Circular.

https://doi.org/10.7819/rbgn.v26i01.4250
PDF (English)

Referências

Acerbi, F., Forterre, D. A., & Taisch, M. (2021). Role of artificial intelligence in circular manufacturing: A systematic literature review. IFAC-PapersOnLine, 54(1), 367-372. http://dx.doi.org/10.1016/j.ifacol.2021.08.040.

Agarwal, R., & Dhar, V. (2014). Big data, data science, and analytics: The opportunity and challenge for IS research. Information Systems Research, 25(3), 443-448. http://dx.doi.org/10.1287/isre.2014.0546.

Alaerts, L., Van Acker, K., Rousseau, S., De Jaeger, S., Moraga, G., Dewulf, J., De Meester, S., Van Passel, S., Compernolle, T., Bachus, K., Vrancken, K., & Eyckmans, J. (2019). Towards a more direct policy feedback in circular economy monitoring via a societal needs perspective. Resources, Conservation and Recycling, 149, 363-371. http:// dx.doi.org/10.1016/j.resconrec.2019.06.004.

Ang, K. L., Saw, E. T., He, W., Dong, X., & Ramakrishna, S. (2021). Sustainability framework for pharmaceutical manufacturing (PM): A review of research landscape and implementation barriers for circular economy transition. Journal of Cleaner Production, 280, 124264. http://dx.doi.org/10.1016/j.jclepro.2020.124264.

Ardolino, M., Rapaccini, M., Saccani, N., Gaiardelli, P., Crespi, G., & Ruggeri, C. (2018). The role of digital technologies for the service transformation of industrial companies. International Journal of Production Research, 56(6), 2116-2132. http://dx.doi.org/10.1080/0020754 3.2017.1324224.

Awan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance. Technological Forecasting and Social Change, 168, 120766. http://dx.doi.org/10.1016/j. techfore.2021.120766.

Azeem, M., Haleem, A., Bahl, S., Javaid, M., Suman, R., & Nandan, D. (2022). Big data applications to take up major challenges across manufacturing industries: A brief review. Materials Today: Proceedings, 49, 339-348. http:// dx.doi.org/10.1016/j.matpr.2021.02.147.

Bag, S., Pretorius, J. H. C., Gupta, S., & Dwivedi, Y. K. (2021). Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. Technological Forecasting and Social Change, 163, 120420. http://dx.doi.org/10.1016/j.techfore.2020.120420.

Bai, C., Dallasega, P., Orzes, G., & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Economics, 229, 107776. http://dx.doi.org/10.1016/j.ijpe.2020.107776.

Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120. http:// dx.doi.org/10.1177/014920639101700108.

Cabrera-Sánchez, J. P., & Villarejo-Ramos, A. F. (2019). Fatores que afetam a adoção de análises de Big Data em empresas. Revista de Administração de Empresas, 59(6), 415-429.

Carvalho, A. C. P., Carvalho, A. P. P., & Carvalho, N. G. P. (2020). Industry 4.0 technologies: What is your potential for environmental management? In J. Hamilton Ortiz (Ed.), Industry 4.0: Current status and future trends. London: IntechOpen.

Colorado, H. A., Velásquez, E. I. G., & Monteiro, S. N. (2020). Sustainability of additive manufacturing: The circular economy of materials and environmental perspectives. Journal of Materials Research and Technology, 9(4), 8221- 8234. http://dx.doi.org/10.1016/j.jmrt.2020.04.062.

Cui, Y., Kara, S., & Chan, K. C. (2020). Manufacturing big data ecosystem: A systematic literature review. Robotics and Computer-integrated Manufacturing, 62, 101861. http://dx.doi.org/10.1016/j.rcim.2019.101861.

Desing, H., Brunner, D., Takacs, F., Nahrath, S., Frankenberger, K., & Hischier, R. (2020). A circular economy within the planetary boundaries: Towards a resource-based, systemic approach. Resources, Conservation and Recycling, 155, 104673. http://dx.doi.org/10.1016/j.resconrec.2019.104673.

Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., Wamba, S. F., & Roubaud, D. (2019a). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting and Social Change, 144, 534-545. http://dx.doi.org/10.1016/j. techfore.2017.06.020.

Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019b). Big data and predictive analytics and manufacturing performance: Integrating institutional theory, resource‐based view and big data culture. British Journal of Management, 30(2), 341-361. http://dx.doi.org/10.1111/1467-8551.12355.

Elkington, J. (2019). Green swans: The coming boom in regenerative capitalism. Austin: Greenleaf Book Group. Ellen MacArthur Foundation. (2022). Conceito. https:// www.ellenmacarthurfoundation.org/

Enyoghasi, C., & Badurdeen, F. (2021). Industry 4.0 for sustainable manufacturing: Opportunities at the product, process, and system levels. Resources, Conservation and Recycling, 166, 105362. http://dx.doi.org/10.1016/j.resconrec.2020.105362.

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests forcorrelation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. http://dx.doi.org/10.3758/ BRM.41.4.1149. PMid:19897823.

Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy: A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768. http://dx.doi.org/10.1016/j.jclepro.2016.12.048.

Grant, R. M. (1991). The resource-based theory of competitive advantage: Implications for strategy formulation. California Management Review, 33(3), 114-135. http:// dx.doi.org/10.2307/41166664.

Grant, R. M. (1996). Prospering in dynamically-competitive environments: Organizational capability as knowledge integration. Organization Science, 7(4), 375-387. http:// dx.doi.org/10.1287/orsc.7.4.375.

Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049-1064. http://dx.doi. org/10.1016/j.im.2016.07.004.

Gupta, S., Chen, H., Hazen, B. T., Kaur, S., & Santibañez Gonzalez, E. D. (2019). Circular economy and big data analytics: A stakeholder perspective. Technological Forecasting and Social Change, 144, 466-474. http:// dx.doi.org/10.1016/j.techfore.2018.06.030.

Gupta, H., Kumar, A., & Wasan, P. (2021). Industry 4.0, cleaner production and circular economy: An integrative framework for evaluating ethical and sustainable business performance of manufacturing organizations. Journal of Cleaner Production, 295, 126253. http://dx.doi. org/10.1016/j.jclepro.2021.126253.

Hair Jr., J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Cham: Springer. Hapuwatte, B. M., & Jawahir, I. S. (2019). A total life cycle approach for developing predictive design methodologies to optimize product performance. Procedia Manufacturing, 33, 11-18. http://dx.doi.org/10.1016/j. promfg.2019.04.003.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. http:// dx.doi.org/10.1007/s11747-014-0403-8.

Ibarra, D., Ganzarain, J., & Igartua, J. I. (2018). Business model innovation through Industry 4.0: A review. Procedia Manufacturing, 22, 4-10. http://dx.doi.org/10.1016/j. promfg.2018.03.002.

International Organization for Standardization – ISO. (2018). ISO/TC 323: Circular economy. Genebra: ISO. Jabbour, A. B. L. S., Luiz, J. V. R., Luiz, O. R., Jabbour, C. J. C., Ndubisi, N. O., Oliveira, J. H. C., & Horneaux, F., Jr. (2018). Circular economy business models and operations management. Journal of Cleaner Production, 235, 1525- 1539. http://dx.doi.org/10.1016/j.jclepro.2019.06.349.

Jabbour, C. J. C., Jabbour, A. B. L. S., Sarkis, J., & Godinho Fo., M. (2019). Unlocking the circular economy through new business models based on large-scale data: An integrative framework and research agenda. Technological Forecasting and Social Change, 144, 546-552. http://dx.doi.org/10.1016/j.techfore.2017.09.010.

Jabbour, C. J. C., Fiorini, P. D. C., Ndubisi, N. O., Queiroz, M. M., & Piato, É. L. (2020a). Digitallyenabled sustainable supply chains in the 21st century: A review and a research agenda. The Science of the Total Environment, 725, 138177. http://dx.doi.org/10.1016/j. scitotenv.2020.138177. PMid:32302825.

Jabbour, C. J. C., Fiorini, P. D. C., Wong, C. W., Jugend, D., Jabbour, A. B. L. S., Seles, B. M. R. P., Pinheiro, M. A. P., & Silva, H. M. R. (2020b). First-mover firms in the transition towards the sharing economy in metallic natural resource-intensive industries: Implications for the circular economy and emerging industry 4.0 technologies. Resources Policy, 66, 101596. http://dx.doi.org/10.1016/j. resourpol.2020.101596.

Kamal, M. M., Sivarajah, U., Bigdeli, A. Z., Missi, F., & Koliousis, Y. (2020). Servitization implementation in the manufacturing organisations: Classification of strategies, definitions, benefits and challenges. International Journal of Information Management, 55, 102206. http://dx.doi.org/10.1016/j.ijinfomgt.2020.102206.

Kleindorfer, P. R., Singhal, K., & van Wassenhove, L. N. (2005). Sustainable operations management. Production and Operations Management, 14(4), 482-492. http://dx.doi. org/10.1111/j.1937-5956.2005.tb00235.x.

Kristoffersen, E., Blomsma, F., Mikalef, P., & Li, J. (2020). The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies. Journal of Business Research, 120, 241-261. http://dx.doi. org/10.1016/j.jbusres.2020.07.044.

Kristoffersen, E., Mikalef, P., Blomsma, F., & Li, J. (2021). Towards a business analytics capability for the circular economy. Technological Forecasting and Social Change, 171, 120957. http://dx.doi.org/10.1016/j. techfore.2021.120957.

MacArthur, E. (2013). Towards the circular economy. Journal of Industrial Ecology, 2, 23-44. Majeed, A., Zhang, Y., Ren, S., Lv, J., Peng, T., Waqar, S., & Yin, E. (2021). A big data-driven framework for sustainable and smart additive manufacturing. Robotics and Computer-integrated Manufacturing, 67, 102026. http://dx.doi.org/10.1016/j.rcim.2020.102026.

Malek, J., & Desai, T. N. (2019). Interpretive structural modelling based analysis of sustainable manufacturing enablers. Journal of Cleaner Production, 238, 117996. http://dx.doi.org/10.1016/j.jclepro.2019.117996.

Malek, J., & Desai, T. N. (2021). A framework for prioritizing the solutions to overcome sustainable manufacturing barriers. Cleaner Logistics and Supply Chain, 1, 100004. http://dx.doi.org/10.1016/j.clscn.2021.100004.

Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and e-Business Management, 16(3), 547-578. http://dx.doi. org/10.1007/s10257-017-0362-y.

Moreno, M., Turner, C., Tiwari, A., Hutabarat, W., Charnley, F., Widjaja, D., & Mondini, L. (2017). Redistributed manufacturing to achieve a Circular Economy: A case study utilizing IDEF0 modeling. Procedia CIRP, 63, 686-691. http://dx.doi.org/10.1016/j.procir.2017.03.322.

Nagorny, K., Lima-Monteiro, P., Barata, J., & Colombo, A. W. (2017). Big data analysis in smart manufacturing: A review. International Journal of Communications, Network and Systems Sciences, 10(3), 31-58. http://dx.doi. org/10.4236/ijcns.2017.103003.

Navare, K., Muys, B., Vrancken, K. C., & Van Acker, K. (2021). Circular economy monitoring: How to make it apt for biological cycles? Resources, Conservation and Recycling, 170, 105563. http://dx.doi.org/10.1016/j. resconrec.2021.105563.

Nobre, G. C., & Tavares, E. (2017). Scientific literature analysis on big data and internet of things applications on circular economy: A bibliometric study. Scientometrics, 111(1), 463-492. http://dx.doi.org/10.1007/s11192- 017-2281-6.

Okorie, O., Salonitis, K., Charnley, F., Moreno, M., Turner, C., & Tiwari, A. (2018). Digitisation and the circular economy: A review of current research and future trends. Energies, 11(11), 3009. http://dx.doi.org/10.3390/ en11113009.

Peng, D. X., Schroeder, R. G., & Shah, R. (2008). Linking routines to operations capabilities: A new perspective. Journal of Operations Management, 26(6), 730-748. http://dx.doi.org/10.1016/j.jom.2007.11.001.

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. The Journal of Applied Psychology, 88(5), 879- 903. http://dx.doi.org/10.1037/0021-9010.88.5.879. PMid:14516251.

Queiroz, M. M., & Pereira, S. C. F. (2019). Intention to adopt big data in supply chain management: A Brazilian perspective. RAE, 59(6), 389-401. http://dx.doi.org/10.1590/ s0034-759020190605.

Raut, R. D., Mangla, S. K., Narwane, V. S., Gardas, B. B., Priyadarshinee, P., & Narkhede, B. E. (2019). Linking big data analytics and operational sustainability practices for sustainable business management. Journal of Cleaner Production, 224, 10-24. http://dx.doi.org/10.1016/j. jclepro.2019.03.181.

Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D., & Almeida, C. M. (2019). A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. Journal of Cleaner Production, 210, 1343-1365. http://dx.doi.org/10.1016/j. jclepro.2018.11.025.

Reslan, M., Last, N., Mathur, N., Morris, K. C., & Ferrero, V. (2022). Circular economy: A product life cycle perspective on engineering and manufacturing practices. Procedia CIRP, 105, 851-858. http://dx.doi. org/10.1016/j.procir.2022.02.141.

Schoenherr, T., & Speier‐Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: Current state and future potential. Journal of Business Logistics, 36(1), 120-132. http://dx.doi. org/10.1111/jbl.12082.

Tayal, A., Solanki, A., & Singh, S. P. (2020). Integrated frame work for identifying sustainable manufacturing layouts based on big data, machine learning, meta-heuristic and data envelopment analysis. Sustainable Cities and Society, 62, 102383. http://dx.doi.org/10.1016/j.scs.2020.102383.

Tseng, M. L., Tan, R. R., Chiu, A. S., Chien, C. F., & Kuo, T. C. (2018). Circular economy meets industry 4.0: Can big data drive industrial symbiosis? Resources, Conservation and Recycling, 131, 146-147. http://dx.doi. org/10.1016/j.resconrec.2017.12.028.

United Nations. (2015). General Assembly Resolution A/ RES/70/1. Transforming Our World, the 2030 Agenda for Sustainable Development. http://www.un.org/ga/search/ view_doc.asp?symbol=A/RES/70/1&Lang=E

Wang, C. H., Ali, M. H., Chen, K. S., Negash, Y. T., Tseng, M. L., & Tan, R. R. (2021). Data driven supplier selection as a circular economy enabler: A Taguchi capability index for manufactured products with asymmetric tolerances. Advanced Engineering Informatics, 47, 101249. http:// dx.doi.org/10.1016/j.aei.2021.101249.

Yu, W., Chavez, R., Jacobs, M. A., & Feng, M. (2018). Data-driven supply chain capabilities and performance: A resource-based view. Transportation Research Part E, Logistics and Transportation Review, 114, 371-385. http:// dx.doi.org/10.1016/j.tre.2017.04.002.

Zeng, H., Chen, X., Xiao, X., & Zhou, Z. (2017). Institutional pressures, sustainable supply chain management, and circular economy capability: Empirical evidence from Chinese eco-industrial park firms. Journal of Cleaner Production, 155, 54-65. http://dx.doi.org/10.1016/j. jclepro.2016.10.093.

Zhang, Y., Ren, S., Liu, Y., & Si, S. (2017). A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. Journal of Cleaner Production, 142, 626-641. http://dx.doi. org/10.1016/j.jclepro.2016.07.123.

Zhang, D., Pan, S. L., Yu, J., & Liu, W. (2022). Orchestrating big data analytics capability for sustainability: A study of air pollution management in China. Information & Management, 59(5), 103231. http://dx.doi.org/10.1016/j. im.2019.103231.

Em caso de aprovação do artigo para publicação, os direitos de copyright são cedidos pelo(s) autor(es) à Revista Brasileira de Gestão de Negócios – RBGN.

Nestes termos, é OBRIGATÓRIO que os autores enviem para RBGN o formulário de Cessão de Direitos Autorias devidamente preenchido e assinado. Conforme o modelo: [Direitosautorais]

As condições da Cessão de Direitos Autorais indicam que a Revista Brasileira de Gestão de Negócios – RBGN possui a título gratuito e em caráter definitivo os direitos autorais patrimoniais dos artigos por ela publicados. Não obstante a Cessão dos Direitos Autorais, a RBGN faculta aos autores o uso desses direitos sem restrições.

Os textos publicados na RBGN são de inteira responsabilidade de seus autores.

A revista adota o padrão de licença  CC-BY Creative Commons Attribution 4.0 permitindo redistribuição e reutilização dos artigos sob a condição de que a autoria seja devidamente creditada.