Melhorando o desempenho do portfólio: incorporando incertezas de parâmetros em estratégias beta zero
PDF (English)

Palavras-chave

otimização estocástica de portfólio beta zero
portfólio neutro
Filtro de Kalman
modelo multifatorial de precificação de ativos

Como Citar

Petchak Gomes, T., & Roberto Frega, J. (2025). Melhorando o desempenho do portfólio: incorporando incertezas de parâmetros em estratégias beta zero. RBGN - Revista Brasileira De Gestão De Negócios, 27(01). https://doi.org/10.7819/rbgn.v27i01.4290

Resumo

Objetivo – Este estudo examina uma estratégia de portfólio zero-beta que considera as incertezas nos retornos esperados e nos betas, visando melhorar o desempenho dos investimentos por meio da incorporação da incerteza dos parâmetros no processo de otimização.

Referencial Teórico – A pesquisa é fundamentada na teoria moderna de portfólio e na otimização robusta, utilizando o modelo multifatorial de precificação de ativos de Chen, Roll e Ross (1986). O estudo emprega o Filtro de Kalman para a estimação dinâmica dos betas junto com suas incertezas e incorpora as previsões de analistas para avaliar os retornos esperados e suas incertezas associadas.

Metodologia – O estudo constrói dois tipos de portfólio zero-beta: um portfólio long-short estocástico que maximiza a razão entre o retorno esperado e a incerteza dos parâmetros, e um portfólio long-short normal que foca exclusivamente na maximização do retorno esperado. O desempenho do portfólio é avaliado com dados de 2015 a 2022.

Resultados – Os resultados indicam que os portfólios long-short estocásticos superam os portfólios normais em várias métricas de desempenho. Especificamente, eles demonstram retornos realizados mais altos, menores perdas máximas (drawdowns) e índice de Sharpe superior. Além disso, a abordagem estocástica apresenta previsões mais precisas, com um erro quadrático médio significativamente menor.

Implicações Práticas e Sociais da Pesquisa – Os achados fornecem insights para investidores, gestores de fundos e profissionais que buscam melhorar a estabilidade e o desempenho do portfólio sob incerteza. No entanto, a dependência das estimativas dos analistas deve ser abordada com cautela, pois podem ocorrer desvios em relação aos valores esperados.

Contribuições – Este estudo contribui para a literatura existente ao validar empiricamente os benefícios da incorporação da incerteza dos parâmetros na otimização de portfólios.

https://doi.org/10.7819/rbgn.v27i01.4290
PDF (English)

Referências

​​Asafo-Adjei, E., Adam, A. M., Adu-Asare Idun, A., & Ametepi, P. Y. (2022). Dynamic Interdependence of Systematic Risks in Emerging Markets Economies: A Recursive-Based Frequency-Domain Approach. Discrete dynamics in nature and society, 2022, pp. 1-19.

​Avanidhar, S. (2010). The Cross-Section of Expected Stock Returns: What Have We Learnt from the Past Twenty-Five Years of Research? European financial management, 16, pp. 27-42.

​Balakrishnan, K., Shivakumar, L., & Taori, P. (2021). Analysts’ estimates of the cost of equity capital. Jounal of accounting & economics, 71, p. 101367.

​Bertsimas, D., & Sim, M. (02 de 2004). The Price of Robustness. Operations Research, 52, pp. 35-53.

​Bertsimas, D., Brown, D., & Caramanis, C. (2011). Theory and Application of Robust Optimization. Society for Industrial & Applied Mathematics (SIAM), pp. 364-501.

​Bielstein, P., & Hanauer, M. X. (2019). Mean-variance optimization using forward-looking return estimates. Review of quantitative finance and accounting, 52, pp. 815-840.

​Black, F. (1993). Beta and Return. Journal of Portfolio Management, pp. 8-18.

​Bobkov, S., Chistyakov, G., & Gotze, F. (2023). Sums of Independent Random Variables. Em Concentrationn and Gaussian Approximation for Rondomized Sums.

​Bodie, Z., Kane, A., & Marcus, A. J. (2014). Investments. McGraw Hill Education.

​Bowen, D. A. (2016). Pairs trading in the UK equity market: risk and return. The European Journal of Finance, 22, pp. 1363-1387.

​Bramante, R., & Gabbi, G. (April de 2006). Portfolio optimisation under changing risk via time-varying beta. 32, pp. 337-346.

​Campbell, J. Y. (April de 1996). Understanding Risk and Return. Journal of Political Economy, 104, pp. 298-345.

​Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEE Transactions on Information Theory, 52, pp. 489-509. doi:10.1109/TIT.2005.862083

​Caneo, F., & Kristjanpoller, W. (september de 2020). Improving statistical arbitrage investment strategy: evidence from Latin American stock markets. International Journal of Finance & Economics, 26, pp. 4424-4440.

​Chen, L., & Peng, J. R. (2017). Diversified models for portfolio selection based on uncertain semivariance. International Journal of System Science, 43, pp. 637-648.

​Chen, N.-F., Roll, R., & Ross, S. A. (1986). Economic Forces and the Stock Market. The Journal of Business, 383-403.

​Chen, W., Li, D., & Liu, W. (2019). Multi-period mean-semivariance portfolio optimzation based on uncertain measure. Soft Computing, 23, pp. 6231-6247.

​Choudhry, T., & Wu, H. (2009). Forecasting the weekly time-varying beta of UK firms: GARCH models vs. Kalman filter method. The European Journal of Finance, 15, pp. 437-444.

​Do, B., & Faff, R. (2010). Does simple pairs trading still work? Financial Analyst Journal, 66, pp. 83-95.

​Echterling, F., Eierle, B., & Ketterer, S. (2015). A review of the literature on methods of computing the implied cost of capital. International Review of Financial Analysis, 42, pp. 235-252.

​Ehrhardt, M., & Brigham, E. F. (2019). Corporate Finance: A Focused Approach. Cengage Learning.

​Elliot, R. J., Van der Hoek, J., & Malcom, W. P. (2005). Pairs Trading. Quantitative Finance, 3, pp. 271-276.

​Elton, E. J., & Gruber, M. J. (1997). Modern portfolio theory, 1950 to date. Journal of Bankng & Finance, pp. 1743-1759.

​Fabozzi, F. J., Huang, D., & Zhou, G. (January de 2009). Robust portfolios: contributions from operations research and finance. Annals of Operations Research, pp. 191-220.

​Fama, E. F. (1970). Efficient Capital Markets: a Review of Theory and Empirical Work. The Journal of Finance, 383-417.

​Fama, E. F., & French, K. R. (March de 1996). Multifactor Explanations of Asset Pricing Anomalies. The Journal of Finance, pp. 55-84.

​Fama, E. F., & French, K. R. (1997). Industry cost of equity. Journal of financial economics, 43, pp. 183-193.

​Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116, pp. 1-22.

​Federal Reserve Bank of St. Louis. (2024). FRED Economic Data. Fonte: https://fred.stlouisfed.org/series/DGS10

​Fernandes, J. B., Ornelas, J. H., & Cusicanqui, O. M. (2012). Combining equilibrium, resampling, and analyst’s views in portfolio optimization. Journal of Banking & Finance, 36, pp. 1354-1361.

​Galagedera, D. (2007). A review of capital asset pricing models. Managerial finance, 33, pp. 821-832.

​García, F., González-Bueno, J., & Riley, R. (2019). Selecting Socially Responsible Portfolios: A Fuzzy Multicriteria Approach. Sustaintability, 9, p. 2496.

​Garcia, F., González-Bueno, J., Guijarro, F., Oliver, J., & Tamošiūnienė, R. (2020). Multiobjective approach to the portfolio optmization in the light of the credibility theory. Technological and Economic Development of Economy, 26(6), pp. 1165-1186. doi:https://doi.org/10.3846/tede.2020.13189

​Goetzmann, W. N., & Massa, M. (2008). Dispersion of opinion and stock returns. Journal of Financial Markets, 8, pp. 324-349.

​Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations Research, pp. 1-38.

​Groenewold, N., & Fraser, P. (1999). Time-varying estimates of CAPM betas. Mathematics and Computers in Simulation, 48, pp. 531-539.

​Hiroyuki, N., Takeaki, Y., Futoshi, K., Yuya, N., Rina, S., & Ko, K. (2021). Sum of variance for quantifying the variation of multiple sequential data for the crispness evaluation of chicken nugget. Journal of Texture Studies.

​Huang, X. (2012). Mean-variance models for portfolio selections subject to expert's estimation. Expert System with application, 39, pp. 5887-5893.

​Jagannathan, R., & Wang, Z. (1996). The Conditional CAPM and the Cross-Section of Expected Returns. Journal of Finance, 51, pp. 3-53.

​Jagannathan, R., Schaumburg, E., & Zhou, G. (2010). Cross-Sectional Asset Pricing Tests. Annual Review of Financial Economics, 2, pp. 49-74.

​Jenkinson, M., Bannister, P., & Smith, S. (October de 2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, pp. 825-841.

​Kemaloglu, S. A., Inan, G. E., & Apaydin, A. (2018). Portfolio Optmization Under Parameter Uncertainty Using Risk Aversion Formula. Communication Faculty of Science University of Ankara-Series A1 Mathematics and Statistics, pp. 50-63.

​Kolm, P. N., Tütüncü, R., & Fabozzi, F. J. (2013). 60 Years of Portfolio Optimization: Practical Challenges and Current Trends. European Journal of Operational Research, pp. 356-371.

​Kwan, C. C. (1999). a note on market-neutral portfolio selection. Journal of Banking & Finance, 23, pp. 773-799.

​Lemons, D. S. (2002). An Introduction to Stochastic Processes in Physics. The Johns Hopkins University Press.

​Lesmond, D. A., Ogden, J. P., & Trzcinka, C. A. (1999). A New Estimate of Transaction Costs. The Review of Financial Studies.

​Maenhout, P. J. (2004). Robust Portfolio Rules and Asset Pricing. Review of Financial Studies, pp. 951-983.

​Mamaysky, H., Spiegel, M., & Zhang, H. (2008). Estimating the Dynamics of Mutual Fund Alphas and Betas. The Review of Financial Studies, 21, pp. 233-246.

​Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, pp. 77-91.

​Markowitz, H. (Jun de 1991). Foundation of Portfolio Theory. Journal of Finance, pp. 469-477.

​Masashi, S. (2015). Sum of Independent Random Variables.

​Mergner, S., & Bulla, J. (2008). Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques. The European Journal of Finance, 14, pp. 771-802.

​Miller, M., & Modigliani, F. (1961). Dividend Policy, Growth, and the Valuation of Shares. The Journal of Business, 34, p. 411.

​Morettin, P. A., & Bussab, W. O. (2017). Estatística básica. Saraiva.

​Pier-Olivier, C., & Lamardelet, L. (2021). The variance sum law and its implications for modelling. The Quantitative Methods for Psychology.

​Qin, Z., Kar, S., & Zheng, H. (2016). Uncertain portfolio adjusting model using semiabsolute deviation. Soft Computing, 20, pp. 717-725.

​Raftery, A., Gneiting, T., & Polakowski, M. (s.d.). Using Bayesian model averaging to calibrate forecast ensembles. MONTHLY WEATHER REVIEW, pp. 1155-1174.

​Ribeiro Jr, P. J. (2022). Inferência Estatística (Inferencia Bayesiana).

​Rockafellar, R., & Wets, R. (1991). Scenarios And Policy Aggregation in Optimization Under Uncertainty. Mathematics of operation research, pp. 119-147.

​Ross, S. A. (12 de 1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, pp. 341-360.

​Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, pp. 425-444.

​Smith, J. O. (2011). Spectral Audio Signal Processing. (W. Publishing, Ed.) W3K Publishing. Fonte: ccrma.stanford.edu/~jos/sasp/sasp-citation.html: https://ccrma.stanford.edu/~jos/sasp/Product_Two_Gaussian_PDFs.html

​Verardo, M. (2009). Heterogeneous Beliefs and Momentum Profits. Journal of financial and quantitative analysis, 44, pp. 795-822.

​Wang, X., Wang, B., Li, T., Li, H., & Watada, J. (2023). Multi-criteria fuzzy portfolio selection based on three-way decisions and cumulative proscpect theory. Applied Soft Computing.

​Wells, C. (1996). The Kalman Filter in Finance: Advanced Studies in Theorical and Applied Econometrics. Springer Science+Business Media Dordrech.

​Xidonas, P., Steuer, R., & Hassapis, C. (2020). Robust portfolio optimization: a categorized bibliographic review. Annals of Operations Research, pp. 533-552.

​Xue, L., Di, H., & Zhang, Z. (2019). Uncertain portfolio selection with mental accounts and realistic constraints. Journal of Computational and Applied Mathematics, 346, pp. 42-52.

​Yadav, S., Kumar, A., Mehlawat, M. K., Gupta, P., & Charles, V. (2023). A multi-objective sustainable financial portfolio selection approach under an intuitionistic fuzzy framework. Information Science, 6. doi:https://doi.org/10.1016/j.ins.2023.119379

​Zhai, J., & Bai, M. (2018). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics, 330, pp. 53-69.

​Zhang, Y., Li, X., & Guo, S. (2018). Portfolio selection problems with Markowitz’s. Fuzzy Optimization and Decision Making, pp. 125-158.

Em caso de aprovação do artigo para publicação, os direitos de copyright são cedidos pelo(s) autor(es) à Revista Brasileira de Gestão de Negócios – RBGN.

Nestes termos, é OBRIGATÓRIO que os autores enviem para RBGN o formulário de Cessão de Direitos Autorias devidamente preenchido e assinado. Conforme o modelo: [Direitosautorais]

As condições da Cessão de Direitos Autorais indicam que a Revista Brasileira de Gestão de Negócios – RBGN possui a título gratuito e em caráter definitivo os direitos autorais patrimoniais dos artigos por ela publicados. Não obstante a Cessão dos Direitos Autorais, a RBGN faculta aos autores o uso desses direitos sem restrições.

Os textos publicados na RBGN são de inteira responsabilidade de seus autores.

A revista adota o padrão de licença  CC-BY Creative Commons Attribution 4.0 permitindo redistribuição e reutilização dos artigos sob a condição de que a autoria seja devidamente creditada.