Beyond the Screen: A Creative Exploration of Content that Engages on YouTube Discussed by Social Media Influencers
PDF (English)

Palabras clave

social media influencer
YouTube
video content
digital engagement
topic modeling

Cómo citar

Cristina Munaro, A., Cristine Francisco Maffezzolli, E., Santos Rodrigues, J. P., & Cabrera Paraiso, E. (2024). Beyond the Screen: A Creative Exploration of Content that Engages on YouTube Discussed by Social Media Influencers . RBGN Revista Brasileira De Gestão De Negócios, 26(03). https://doi.org/10.7819/rbgn.v26i03.4275

Resumen

Purpose – The study aims to investigate the most popular content discussed by social media influencers on YouTube and its associated valence, to delineate the content categories favored by top Brazilian influencers, and to assess their impact on consumer digital engagement. 

Theoretical framework – This study draws upon influencer marketing, social media influencer (SMI) literature, and digital engagement. 

Design/methodology/approach – A data mining approach was used. The methodology includes the collection of video post characteristics, engagement metrics, and audio transcriptions from 34,563 videos on 103 YouTube channels. After textual preprocessing, a topic modeling stage is performed using the Latent Dirichlet Allocation (LDA) algorithm and sentiment analysis.  

Findings – The study identified 19 critical dimensions of video content on YouTube. The top 3 content categories with the highest user digital engagement are: Family, Entertainment/General, and Culture & Entertainment. The sentiment analysis shows that content about Beauty, Gastronomy, and Economics, Entrepreneurship & Business have the highest proportional positive valence. Politics, Economy & News, Entertainment/General, and Gaming have high percentages of negative valence. 

Practical & social implications of research – The results provide a deep understanding of YouTube's popular content and digital engagement rates. This is essential for companies and SMIs looking to maximize their reach, resonate with their target audience, and stay competitive in the dynamic digital landscape. It allows for more effective communication, content creation, and strategic decision-making. 

Originality/value – Understanding the content on YouTube can provide valuable insights for businesses, marketers, and content creators to optimize their communication strategies.

https://doi.org/10.7819/rbgn.v26i03.4275
PDF (English)

Citas

Agência Brasil (2024). “Pesquisa aponta pulverização no mercado de influenciadores”. Retrieved from: https://agenciabrasil.ebc.com.br/geral/noticia/2024-06/pesquisa-aponta-pulverizacao-no-mercado-de-influenciadores-digitais#. Accessed in June, 2024.

Aggrawal, N., Arora, A., Anand, A., & Irshad, M. S. (2018). View-count based modeling for YouTube videos and weighted criteria–based ranking. Advanced mathematical techniques in engineering sciences, 149-160.

Aleti, T., Pallant, J. I., Tuan, A., & van Laer, T. (2019). Tweeting with the stars: Automated text analysis of the effect of celebrity social media communications on consumer word of mouth. Journal of Interactive Marketing, 48, 17-32.

Almeida, Rafael J. A. (2018). Leia-léxico para inferência adaptada. Retrieved from: https://github.com/rafjaa/LeIA. Accessed June 2024.

Ata, S., Arslan, H. M., Baydaş, A., & Pazvant, E. (2022). The effect of social media influencers’ credibility on consumer’s purchase intentions through attitude toward advertisement. ESIC Market, 53(1), e280-e280.

Balakrishnan, V., & Lloyd-Yemoh, E. (2014). Stemming and lemmatization: A comparison of retrieval performances. Lecture Notes on Software Engineering, 2(3), 174-179.

Berger, J., Moe, W. W., & Schweidel, D. A. (2023). What Holds Attention? Linguistic Drivers of Engagement. Journal of Marketing, 87(5), 793-809.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning research, 3(Jan), 993-1022.

Büschken, J., & Allenby, G. M. (2016). Sentence-based text analysis for customer reviews. Marketing Science, 35(6), 953-975.

Cano-Marin, E., Ribeiro-Soriano, D., Mardani, A., & Gonzalez-Tejero, C. B. (2023). Exploring the challenges of the COVID-19 vaccine supply chain using social media analytics: a global perspective. Sustainable Technology and Entrepreneurship, 2(3), 100047.

Casaló, L. V., Flavián, C., & Ibáñez-Sánchez, S. (2020). Influencers on Instagram: Antecedents and consequences of opinion leadership. Journal of Business Research, 117, 510-519.

Chen, M. J. (2020). Examining the influence of emotional expressions in online consumer reviews on perceived helpfulness. Information Processing & Management, 57(6), 1–15.

Chen, L., Yan, Y., & Smith, A. N. (2023). What drives digital engagement with sponsored videos? An investigation of video influencers’ authenticity management strategies. Journal of the Academy of Marketing Science, 51(1), 198-221.

Cheng, Y., Xie, Y., Zhang, K., Agrawal, A., & Choudhary, A. (2012). How online content is received by users in social media: A case study on Facebook.com posts. In 2nd Social Media Analytics Workshop, Beijing, China.

Chung, S., & Cho, H. (2017). Fostering Parasocial Relationships with Celebrities on social media: Implications for Celebrity Endorsement. Psychology & Marketing, 34(4), 481–495.

Daniel, C., & Dutta, K. (2018). Automated generation of latent topics on emerging technologies from YouTube Video content. In Proceedings of the 51st Hawaii International Conference on System Sciences, 1762-1770.

Debortoli, S., Müller, O., Junglas, I., & vom Brocke, J. (2016). Text mining for information systems researchers: An annotated topic modeling tutorial. Communications of the Association for Information Systems, 39(1), 7.

Digital Marketing Institute. (2024). 20 Surprising Influencer Marketing Statistics. Retrieved from: https://digitalmarketinginstitute.com/blog/20-influencer-marketing-statistics-that-will-surprise-you. Accessed in June 2024.

Feng, J., Mu, X., Wang, W., & Xu, Y. (2021). A topic analysis method based on a three-dimensional strategic diagram. Journal of Information Science, 47(6), 770-782.

Gavilanes, J. M., Flatten, T. C., & Brettel, M. (2018). Content strategies for digital consumer engagement in social networks: Why advertising is an antecedent of engagement. Journal of Advertising, 47(1), 4-23.

Google (2019). Insight Strategy Group, Global, “Premium Is Personal” studies, AU, BR, CA, DE, IN, JP, KR, U.K., U.S. In: What the world watched in a day. Retrieved from https://www.thinkwithgoogle.com/feature/youtube-video-data-watching-habits/. Accessed in June 2024.

Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent Dirichlet allocation. Tourism Management, 59, 467-483.

Hughes, C., Swaminathan, V., & Brooks, G. (2019). Driving brand engagement through online social influencers: An empirical investigation of sponsored blogging campaigns. Journal of Marketing, 83(5), 78-96.

Jacobson, J., Hodson, J., & Mittelman, R. (2022). Pup-ularity contest: The advertising practices of popular animal influencers on Instagram. Technological Forecasting and Social Change, 174, 121226.

Lee, D., Hosanagar, K., & Nair, H. S. (2018). Advertising content and consumer engagement on social media: evidence from Facebook. Management Science, 64(11), 5105-5131.

Leung, F. F., Gu, F. F., Li, Y., Zhang, J. Z., & Palmatier, R. W. (2022). Influencer marketing effectiveness. Journal of marketing, 86(6), 93-115.

Li, X., Shi, M., & Wang, X. S. (2019). Video mining: Measuring visual information using automatic methods. International Journal of Research in Marketing, 36(2), 216-231.

Liu, X., Burns, A. C., & Hou, Y. (2017). An investigation of brand-related user-generated content on Twitter. Journal of Advertising, 46(2), 236-247.

Pezzuti, T., Leonhardt, J. M., & Warren, C. (2021). Certainty in Language Increases Consumer Engagement on Social Media. Journal of Interactive Marketing, 53, 32-46.

Ma, L., & Sun, B. (2020). Machine learning and AI in marketing–Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481-504.

Munaro, A. C., Barcelos, R. H., Francisco-Maffezzolli, E. C. F., Rodrigues, J. P. S., & Paraiso, E. C. (2021). To engage or not engage? The features of video content on YouTube affecting digital consumer engagement. Journal of Consumer Behaviour, 20(5), 1336-1352.

Munaro, A. C., Barcelos, R. H., Francisco-Maffezzolli, E. C., Rodrigues, J. P. S., & Paraiso, E. C. (2024). Does your style engage? Linguistic styles of influencers and digital consumer engagement on YouTube. Computers in Human Behavior, 156, 108217.

Nyagadza, B., Mazuruse, G., Simango, K., Chikazhe, L., Tsokota, T., & Macheka, L. (2023). Examining the influence of social media eWOM on consumers’ purchase intentions of commercialised indigenous fruits (IFs) products in FMCGs retailers. Sustainable Technology and Entrepreneurship, 2(3), 100040.

Nunes, R. H., Ferreira, J. B., Freitas, A. S. D., & Ramos, F. L. (2018). The effects of social media opinion leaders’ recommendations on followers’ intention to buy. Revista Brasileira de Gestão de Negócios, 20, 57-73.

Patel, P. C., Parida, V., & Tran, P. K. (2022). Perceived risk and the need for trust as drivers of improved surgical skills in 3D surgical video technology. Journal of Innovation & Knowledge, 7(4), 100269.

Patel, P. C., Stenmark, M., Parida, V., & Tran, P. K. (2023). A socio-institutional perspective on the reluctance among the elderly concerning the commercialization of 3D surgical video technology in Sweden. Journal of Innovation & Knowledge, 8(2), 100361.

Plummer, M. (2022). Why Video Plays A Key Role In Today’s Marketing Scene. Forbes. Innovation. Retrieved from: https://www.forbes.com/sites/forbestechcouncil/2022/06/03/why-video-plays-a-key-role-in-todays-marketing-scene/. Accessed in June 2024.

Řehůřek, R., & Sojka, P. (2010). Software framework for topic modeling with large corpora. In Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks. Valletta, Malta, 46-50.

Rodrigues, J. P., & Paraiso, E. (2020). From audio to information: Learning topics from audio transcripts. In Anais do VIII Symposium on Knowledge Discovery, Mining and Learning, 121-128.

Rouhani, S., & Mozaffari, F. (2022). Sentiment analysis researches story narrated by topic modeling approach. Social Sciences & Humanities Open, 6(1), 100309.

Santora, J. (2022). Influencer Marketing Hub. Key Influencer Marketing Statistics You Need to Know for 2022. Retrieved from https://influencermarketinghub.com/influencer-marketing-statistics/amp/. Accessed in May 2024.

Schouten, A. P., Janssen, L., & Verspaget, M. (2020). Celebrity vs. Influencer endorsements in advertising: the role of identification, credibility, and Product-Endorser fit. International Journal of Advertising, 39(2), 258-281.

Shahbaznezhad, H., Dolan, R., & Rashidirad, M. (2020). The Role of Social Media Content Format and Platform in Users' Engagement Behavior. Journal of Interactive Marketing, 53, 47-65.

Sette, G., & Brito, P. Q. (2020). To what extent are digital influencers creative? Creativity and Innovation Management, 29(S1), 90-102.

Tellis, G. J., MacInnis, D. J., Tirunillai, S., & Zhang, Y. (2019). What drives virality (sharing) of online digital content? The critical role of information, emotion, and brand prominence. Journal of Marketing, 83(4), 1-20.

Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent Dirichlet allocation. Journal of Marketing Research, 51(4), 463-479.

van Noort, G., Himelboim, I., Martin, J., & Collinger, T. (2020). Introducing a model of automated brand-generated content in an era of computational advertising. Journal of Advertising, 49(4), 411-427.

Voorveld, H. A. (2019). Brand communication in social media: a research agenda. Journal of Advertising, 48(1), 14-26.

Wallach, H. M. (2006). Topic modeling: beyond bag-of-words. In Proceedings of the 23rd international conference on Machine Learning, 977-984.

Yew, J., & Shamma, D. A. (2011). Know your data: Understanding implicit usage versus explicit action in video content classification. In Multimedia on Mobile Devices 2011; and Multimedia Content Access: Algorithms and Systems, 7881, 355-362.

Yoon, S. H., & Lee, S. H. (2022). What Likeability Attributes Attract People to Watch Online Video Advertisements?. Electronics, 11(13), 1960.

Zhang, Y., Moe, W. W., & Schweidel, D. A. (2017). Modeling the role of message content and influencers in social media rebroadcasting. International Journal of Research in Marketing, 34(1),100-119.

 

Una vez aprobada la publicación del artículo, el/los autor/es cede/n los derechos de copyright a la Revista Brasileira de Gestão de Negócios – RBGN.

Es OBLIGATORIO que los autores envíen a la RBGN el formulario de Cesión de Derechos de Autor debidamente cumplimentado y firmado según el modelo: [Derechos de autor]

Las condiciones de la Cesión de Derechos de Autor indican que la Revista Brasileira de Gestão de Negócios – RBGN goza a título gratuito y en carácter definitivo de los derechos de autor patrimoniales de los artículos publicados por ella. A pesar de la Cesión de los Derechos de Autor, la RBGN faculta a los autores al uso de estos derechos sin restricciones.

Los autores se responsabilizan de los textos publicados en la RBGN.

La RBGN adopta el modelo de licencia CC-BY Creative Commons Attribution 4.0, permitiendo la redistribución y reutilización de los artículos garantizando que la autoría esté debidamente acreditada.