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Abstract

Purpose – This study aims to investigate the integration of climate change risk 
factors into asset portfolio optimization. Specifically, it seeks to evaluate the impact 
of maximizing sustainability on portfolio performance, and whether a balanced 
approach between profitability and sustainability can be achieved.

Theoretical framework – The research is based on the Markowitz portfolio selection 
model combined with the principles of sustainable finance. A genetic algorithm 
is used to optimize asset allocation while incorporating sustainability metrics.

Design/methodology/approach – A quantitative research method using a 
genetic optimization algorithm is employed to assess the effects of integrating 
a sustainability index into portfolio selection. The study compares traditional 
financial performance metrics with results incorporating climate change risk factors.

Findings – The findings reveal that while maximizing sustainability may lead 
to short-term reductions in profitability, a balanced approach that integrates 
sustainability considerations can enhance long-term profitability. This balance 
enables investors to meet both financial goals and environmental responsibilities.

Practical & social implications of research – The research contributes to the 
sustainable finance literature by offering insights into optimizing portfolios with 
ESG integration. Practically, it provides investors with strategies for aligning 
profitability and sustainability to promote economic growth while supporting 
environmental and social well-being. Future research could explore sector-specific 
implications and the different impacts of sustainability criteria.

Originality/value – This study presents an innovative approach to asset portfolio 
optimization, advancing both the theoretical understanding of sustainable finance 
and providing practical tools for investors seeking to integrate climate change 
factors without compromising financial performance.
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1 introduction

In recent decades, the rapid increase in human 
activities has contributed to a significant accumulation 
of greenhouse gas (GHG) emissions, leading to notable 
climate changes. These changes have impacted terrestrial 
and aquatic biodiversity, threatened food security, and 
increased the frequency of extreme weather events 
(Intergovernmental Panel on Climate Change, 2021). As 
these risks become more pressing, institutions, companies, 
and individuals are taking proactive measures to mitigate 
the effects of climate change and adapt to its inevitable 
consequences.

In response to the global environmental crisis, 
the concept of sustainability gained prominence with 
the publication of the Brundtland Report (Brundtland, 
1987), which first defined sustainable development as the 
ability to meet current needs without compromising the 
ability of future generations to meet their own. This report, 
presented to the World Commission on Environment 
and Development (WCED), marked the beginning 
of a broader understanding of sustainability that soon 
expanded beyond environmental issues to include social 
and governance dimensions. The Environmental, Social, 
and Governance (ESG) framework now guides investment 
decisions worldwide. Established in 2006, the UN Principles 
for Responsible Investment (PRI) have become a standard 
for responsible investing, encouraging institutional 
investors to integrate ESG factors to improve long-term 
performance while addressing societal challenges (Eccles, 
2010). ESG principles have become central to sustainable 
finance, which aims to achieve both competitive financial 
returns and positive societal outcomes (Nicholls, 2021).

The growing awareness of sustainability issues 
has also been reflected in financial markets, where 
investors increasingly seek opportunities that align with 
ESG criteria. Sustainable investing is no longer a niche 
strategy; it has entered the mainstream of global finance. 
According to Brühl (2022), the demand for ESG-compliant 
financial products continues to grow, demonstrating that 
sustainability has been integrated into investor preferences. 
The financial sector, therefore, plays a critical role in 
promoting sustainability by facilitating the flow of capital 
into projects and businesses that address environmental 
and social challenges while generating economic value.

In this context, a critical sustainability issue is 
climate change. The financial risks associated with climate 
change are now widely recognized, and integrating these 

risks into investment strategies has become essential. 
These risks are generally classified into two categories: 
physical risks, such as the increased frequency and severity 
of extreme weather events, and transition risks, which 
include regulatory changes, shifts in market preferences, 
and technological advances aimed at reducing carbon 
emissions (Task Force on Climate-related Financial 
Disclosures, 2017). Climate metrics are increasingly being 
used in asset portfolio management to provide investors 
with a more comprehensive approach to assessing these 
challenges.

This study focuses on the integration of climate 
risk factors into the algorithmic construction of asset 
portfolios. Specifically, it aims to assess the impact of 
including climate change metrics on portfolio optimization, 
addressing both financial performance and sustainability. 
Two key climate metrics are considered in this research: 
GHG intensity and carbon intensity (Hoffmann & Busch, 
2008; De Spiegeleer et al., 2023). These measures are 
used to quantify climate change risks within the context 
of sustainable investing, offering insights into how 
incorporating such factors can influence asset allocation 
and overall portfolio performance.

Most studies in the literature find a positive 
correlation between ESG performance and company 
financial performance (Friede et al., 2015; Wang et al., 
2016). This growing body of evidence suggests that 
firms that prioritize ESG factors tend to perform better 
financially over the long term, likely due to better risk 
management and alignment with evolving regulatory 
and market environments. However, while substantial 
research has focused on individual company performance, 
less attention has been paid to how these factors affect 
portfolio allocation strategies. This study aims to fill 
this gap by approaching the problem from a portfolio 
optimization perspective. 

First, we consider the impact of GHG intensity 
as a metric for evaluating the impact of the European 
Green Deal on equity portfolios. The European Green 
Deal emphasizes the reduction of GHG emissions across 
sectors, and companies that adapt to these requirements may 
see changes in their stock performance as regulatory and 
market forces evolve (Siddi, 2020). Second, the inclusion 
of carbon intensity as a sustainability metric reflects the 
environmental footprint of companies relative to their 
economic output. This measure is critical for investors 
looking to balance carbon efficiency with profitability. 
Together, these two metrics provide a robust framework 
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for assessing the environmental performance of asset 
portfolios.

Since investors typically seek to optimize their 
portfolios by maximizing returns while minimizing 
volatility, this study adapts Harry Markowitz’s Modern 
Portfolio Theory (MPT) (Markowitz, 1976)) to incorporate 
a sustainability index composed primarily of climate 
metrics. MPT revolutionized portfolio management by 
introducing the concept of the efficient frontier, which 
enables the construction of portfolios that maximize 
expected returns for a given level of risk or minimize 
volatility for a given return. By integrating sustainability 
metrics into this framework, the study aims to develop an 
optimization model that balances financial performance 
with environmental responsibility.

To achieve this, the study employs a genetic 
algorithm that incorporates both financial and sustainability 
criteria into the portfolio optimization process. This 
innovative approach aims to maximize the sustainability 
index without compromising profitability. In doing so, 
the study seeks to quantify the trade-offs involved in 
increasing the sustainability of an asset portfolio, providing 
investors with a clearer understanding of the potential 
return sacrifice required to align their investments with 
climate goals.

Ultimately, this research contributes to the academic 
and practical discourse on sustainable finance by offering 
new insights into the integration of climate risk factors 
into asset portfolio management. The findings show that 
while maximizing sustainability may lead to short-term 
reductions in profitability, a balanced approach can enhance 
long-term returns while fulfilling environmental and 
social responsibilities. This underscores the importance 
for investors of carefully weighing their sustainability goals 
against their financial objectives, as both profitability and 
volatility can be influenced by the extent to which ESG 
criteria are integrated into their portfolios

The remainder of the paper is organized as follows: 
Section 2 covers the theoretical foundations, Section 3 
outlines the methodology, Section 4 presents the results, 
and Section 5 discusses the conclusions and implications.

2 literature review on sustainable 
investing and climate change risk 
integration

Sustainable finance is broadly defined as financial 
services that integrate Environmental, Social, and 

Governance (ESG) criteria into their core business practices 
or investment decisions, aiming to generate positive 
outcomes for customers, society, and the environment 
(Uzsoki, 2020). This approach goes beyond merely 
avoiding harm or mitigating risks; it actively seeks to create 
lasting, positive impacts across social and environmental 
dimensions. Within this framework, portfolio optimization 
has evolved to include sustainability considerations, 
balancing financial returns with ESG criteria (Friede et al., 
2015; Wang et al., 2016).

Within the broader umbrella of sustainable 
finance, two important categories stand out: green finance 
and climate finance. Green finance specifically focuses on 
channeling capital into projects and technologies that 
promote environmental sustainability (Berrou et al., 2019). 
On the other hand, climate finance is more narrowly 
tailored to address climate change directly. It involves 
financing projects that aim to mitigate the adverse effects 
of climate change, such as investing in climate-resilient 
infrastructure, developing low-carbon technologies, and 
supporting the transition to a green, low-carbon economy 
(Giglio et al., 2021).

In the context of climate risk, physical risks 
(e.g., increased frequency of extreme weather events) and 
transition risks (e.g., regulatory changes and shifts towards 
low-carbon technologies) have become key considerations 
for investors (Task Force on Climate-related Financial 
Disclosures, 2017). Recent studies have highlighted the 
importance of integrating these risks into financial models. 
For instance, De Spiegeleer et al. (2023) show how ESG 
considerations, including climate-related metrics, can 
be systematically incorporated into portfolio allocation 
decisions. These studies find that integrating such metrics 
can enhance long-term portfolio stability by mitigating 
exposure to sustainability-related risks.

The field of climate finance has evolved as investors 
seek to balance financial returns with climate mitigation 
and adaptation objectives. Fang et al. (2019) examined 
the financial performance of portfolios under different 
sustainability scenarios and concluded that maximizing 
sustainability could lead to reduced profitability in the 
short term, but offers long-term resilience. This finding 
aligns with Schoenmaker and Schramade’s (2018) argument 
that sustainable finance is not just about risk avoidance, 
but also about leveraging opportunities in the transition 
to a low-carbon economy. Both studies support the 
integration of climate change risks into financial decision 
making and show that ESG-enhanced portfolios tend to 
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outperform conventional portfolios over time, particularly 
when the economic impacts of climate change are taken 
into account.

2.1 Theoretical foundations and evolution 
of sustainable portfolio optimization

Portfolio optimization models have evolved 
significantly to accommodate non-financial factors, 
including climate risks. Building on Markowitz’s Modern 
Portfolio Theory (MPT), this research incorporates 
climate change risk metrics into the traditional risk-return 
framework. A recent study by Le Guenedal and Roncalli 
(2022) proposes specific climate metrics, such as carbon 
intensity and greenhouse gas (GHG) emissions, that are 
integrated into portfolio selection processes to balance 
financial returns with sustainability goals.

An important advance in sustainable finance is 
the integration of multi-objective models that consider 
not only profitability but also sustainability. For instance, 
García et al. (2020) introduced a multi-objective 
credibilistic portfolio selection model and demonstrated 
its application in the Latin American integrated market. 
This approach aligns with the growing focus on sustainable 
investing, where portfolios are optimized not only for 
financial performance but also for environmental impact. 
Similarly, Yadav et al. (2023) proposed a multi-objective 
sustainable financial portfolio selection approach under 
an intuitionistic fuzzy framework, further enriching the 
methodological landscape of sustainable finance.

2.2 intregating climate risk metrics in 
portfolio optimization

The complexity of incorporating sustainability into 
financial models is underscored by recent developments 
in fuzzy logic and decision theory. Wang et al. (2023) 
explored multi-criteria fuzzy portfolio selection based 
on three-way decisions and cumulative prospect theory, 
providing a nuanced approach to handling uncertainty in 
sustainable investments. This aligns with the integration 
of climate risk metrics into portfolio optimization, as 
emphasized by Hoffmann and Busch (2008) and Le 
Guenedal and Roncalli (2022), where genetic algorithms 
are employed to balance profitability and sustainability 
objectives. These approaches are critical in addressing 
existing gaps in traditional portfolio optimization, which 
often fails to account for the uncertainty inherent in 
climate-related financial risks.

One of the most promising approaches for 
integrating climate risk into portfolio optimization is the 
use of genetic algorithms, as demonstrated by Hoffmann 
and Busch (2008). Genetic algorithms allow for multi-
objective optimization, balancing profitability and 
sustainability objectives, and are well suited to handling 
the complexity of climate-related data. By incorporating 
climate metrics such as GHG emissions and carbon 
intensity into the optimization process, these algorithms 
can generate portfolios that minimize climate risks while 
maintaining competitive financial performance.

The integration of sustainability metrics, 
particularly those related to climate change, into asset 
portfolio selection has gained traction in both academic 
and practical applications. Recent work by Fang et al. 
(2019) shows that models incorporating climate risk 
factors outperform traditional models in the long run, 
despite potential short-term trade-offs in profitability. 
These findings reinforce the argument that investors can 
achieve a balanced approach that meets both financial and 
environmental goals, providing a more comprehensive risk 
assessment framework compared to conventional models.

2.3 Addressing gaps in prior research

Despite the growing body of literature on 
sustainable portfolio optimization, gaps remain in fully 
integrating sustainability indices into traditional risk-return 
frameworks. Valencia (1997) demonstrated how genetic 
algorithms could be applied to optimize portfolios that 
integrate sustainability indices, offering a dynamic approach 
to balancing financial returns and climate responsibility. 
These advances enable investors to develop portfolios that 
align with evolving environmental regulations and market 
trends, such as the European Green Deal (Siddi, 2020), 
while maintaining acceptable levels of risk and return.

Additionally, García et al. (2019) developed a 
credibilistic mean-semivariance per portfolio selection 
model tailored to the Latin American context. While 
this model incorporates sustainability considerations, 
further refinement is necessary to ensure broader 
applicability across different financial markets. Similarly, 
De Spiegeleer et al. (2023) highlighted the growing role 
of ESG-driven portfolio allocation, but their work does 
not fully consider algorithmic optimization techniques, 
which can provide greater precision in balancing financial 
and sustainability objectives. This study builds upon 
this prior work by integrating genetic algorithm-based 
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optimization with sustainability indices to address the 
shortcomings in conventional portfolio selection methods. 
By refining and extending the theoretical foundations 
of sustainable investing, this research contributes to the 
ongoing discourse on ESG integration, offering a novel 
approach that aligns investor preferences with sustainability 
and profitability goals.

3 Methodology and data

3.1 climate change risk factors and 
company selection

According to the GHG Protocol (see https://
ghgprotocol.org/standards-guidance), the sources of a 
company’s emissions are divided into three groups: Scope 
1, Scope 2, and Scope 3 emissions. Scope 1 emissions are 
direct emissions from sources that are owned or controlled 
by the emitting company. Scope 2 emissions are indirect 
emissions associated with the purchase of electricity, heat 
or steam. These can be calculated from the energy mix 
of the country in which the company is located or from 
the energy mix of the utility providing the electricity. 
Scope 3 emissions include indirect emissions such as the 
production of purchased materials, transportation in non-
owned vehicles and electrical activities outside of Scope 2.

Integrating climate change risk factors into asset 
portfolio optimization requires a nuanced understanding 
of the sources and impacts of GHG emissions, as they are 
a direct measure of a company’s environmental footprint. 
GHG emissions are divided into three distinct scopes as 
defined by the Greenhouse Gas Protocol (World Resources 
Institute, 2004): Scope 1: Direct emissions from owned or 
controlled sources (e.g., emissions from fuel combustion 
in company-owned vehicles or facilities); Scope 2: Indirect 
emissions from the generation of purchased electricity, 
steam, heating, and cooling consumed by the reporting 
company; Scope 3: All other indirect emissions that occur 
in a company’s value chain (e.g., emissions from suppliers 
or waste disposal).

Each scope contributes to the total emissions of 
a company, typically expressed in tons of CO2 equivalent 
(tCO2e) (Le Guenedal & Roncalli, 2022). For more 
accurate comparisons across companies and sectors, 
GHG emissions are often normalized to carbon intensity, 
which measures emissions relative to a company’s output 
or revenue.

We define total GHG emissions as the sum of 
emissions across the three scopes for each company in 
the portfolio (Equation 1), using the following formula:

3
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1
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where CEij represents Scope j type of emissions in company 
i. For the purposes of this research, the carbon intensity 
(CI) of a company is calculated by dividing total GHG 
emissions by the company’s total revenue or another 
appropriate economic indicator (Equation 2):

T
j

i otal
i

i

C
CI

Y
=


 (2)

where, CEiTotal represents the total GHG emissions 
of company i, and Yi represents the total performance 
of the company, as measured by the company’s total 
revenue. The decision to use revenue as the denominator 
is maintained to facilitate cross-sector comparisons, as 
the analysis spans various industries, including banking, 
technology, and real estate (Task Force on Climate-related 
Financial Disclosures, 2017). This formulation allows us 
to compare the environmental efficiency of companies 
within the portfolio, taking into account their carbon 
footprint relative to their economic productivity (Le 
Guenedal & Roncalli, 2022).

As shown in Table 1, energy companies have 
significantly higher carbon intensities due to their 
primary activities, which include direct emissions from 
fuel combustion and other industrial processes (Scope 1). 
This is particularly evident in companies such as Repsol 
and Endesa, where Scope 1 emissions are the dominant 
factor in their total GHG emissions.

The selection of the 10 companies from the 
IBEX 35 stock market index was driven by a strategic 
consideration of both sector representation and sustainability 
practices. In addition to choosing companies listed 
in the index, the selection aimed to capture a diverse 
range of industries to ensure a well-rounded portfolio. 
Each company was evaluated based on its sustainability 
performance, including factors such as carbon emissions, 
energy usage, and overall environmental impact. This 
assessment was complemented by a review of financial 
performance metrics, such as revenue growth, return on 
investment, and risk-adjusted returns, to ensure that the 
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chosen companies represented a balanced mix of strong 
financial stability and progressive sustainability efforts. 
Additionally, companies from high-impact sectors, 
such as energy (Repsol, Iberdrola) and utilities (Endesa, 
Naturgy), were included to highlight those making progress 
towards decarbonization, while firms in sectors such as 
technology (Indra, Acciona) were chosen to reflect their 
lower carbon footprint and significant role in driving 
innovation. This multi-faceted approach ensured that 
the portfolio not only met sustainability goals, but also 
provided a comprehensive cross-sector representation of 
the Spanish market.

The emission data for each company are sourced 
from Refinitiv, which provides comprehensive ESG data, 
including emissions figures reported by the companies 
themselves (Supplementary Data 6 – Climate Metrics). 
Refinitiv aggregates data from a wide variety of sources, 
including company annual reports, regulatory filings, and 
public disclosures, ensuring a broad and authoritative basis 
for the analysis. However, inconsistencies in emissions 
reporting, such as those observed for Bankinter and Repsol, 
may arise due to differences in reporting standards, data 
availability, or company-specific disclosure practices. These 
inconsistencies highlight the importance of scrutinizing 
the transparency of each company’s emissions data and 
their potential impact on the overall analysis.

To ensure clarity and transparency, it is important 
to identify the source of emissions data for each company. 
For example, Refinitiv compiles and standardizes emissions 
information from multiple public disclosures and regulatory 

reports to ensure that data discrepancies are minimized. 
When comparing data across companies, we must also 
consider the reporting standards that each company 
adheres to, as this may influence the reported figures. It 
is also important to note that emissions data might be 
derived from different time periods, which can further 
affect consistency and comparability. Where applicable, 
the methodology used by Refinitiv to aggregate and report 
the emissions data should be mentioned to enhance 
transparency and confidence in the analysis.

However, the table also reveals inconsistencies in 
carbon intensities and CO2e emissions for certain companies, 
such as Bankinter and Repsol, where the reported values 
are either lower than expected or absent. This discrepancy 
is due to the current reliance on corporate transparency 
for environmental data reporting. In cases like Bankinter, 
which operates in the financial sector, the reported emissions 
are disproportionately low compared to its industry peers, 
possibly due to a lack of Scope 1 emissions or insufficient 
reporting of indirect emissions (Scope 2 and 3). There are 
two main reasons for such discrepancies: either the data 
have not been published, or the emissions for a particular 
scope are actually minimal or non-existent.

3.2 integrating climate metrics into the 
Markowitz model and the process of 
adapting the optimization model

In the pursuit of sustainable finance, decarbonizing 
asset portfolios has become a key strategy for aligning 
investment decisions with environmental goals. Andersson et al. 

Table 1 
 Emissions and carbon intensity in IBEX35 companies

company
emissions (tcO2e) Revenue carbon intensity (tcO2e/mill. €) |

Scope1 
(ce1)

Scope2 
(ce2)

Scope3 
(ce3)

Revenue 
(mill €)

Scope1 
(cO1)

Scope2 
(ci2)

Scope3 
(ci3) total (ci)

Indra 1681 7211 378127 3,874.66 0.43 1.86 97.59 99.88

Acciona 159652 139733 2764890 11,195.00 14.26 12.48 246.98 273.72

Colonial 2853 7126 107557 370.92 7.69 19.21 289.98 316.88

Iberdrola 10681100 1879380 42679200 53,949.00 197.99 34.84 791.10 1,023.92

Repsol 19400000 400000 157 69,291.00 281.22 5.72 1,133.11 1,420.05

Telefonica 131809 1002190 1930050 39,993.00 3.30 25.06 48.26 76.61

Sacyr 120101 253441 1953610 4,976.97 24.13 50.92 392.53 467.58

Bankinter 1763,82 0 14102,5 2,202.70 0.80 - 6.40 7.20

Endesa 13698200 397332 21725100 32,896.00 416.41 11.33 660.42 1,088.16

Naturgy 14741500 363489 10080000 33,965.00 434.02 10.70 3,240.98 3,685.71
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(2016) suggest two primary methods for achieving this. The 
first involves divesting from assets with an excessively high 
carbon footprint, thus reducing the overall carbon intensity 
of the portfolio. The second method involves rebalancing 
asset allocations to minimize tracking error relative to a 
benchmark index, while still lowering emissions.

This paper introduces a third approach that focuses 
on maximizing a sustainability index, Sp (see Equation 
3), which incorporates the climate risk metrics previously 
described. Sp, the sustainability index, was chosen for its 
balanced approach to evaluating companies based on both 
profitability and carbon footprint reduction. This index 
goes beyond traditional financial metrics by incorporating 
sustainability-related factors such as carbon emissions and 
resource management alongside financial performance 
indicators such as revenue growth, profitability, and 
return on investment. By combining these elements, Sp 
allows investors to assess a company’s long-term financial 
health while simultaneously ensuring that the company is 
committed to reducing its environmental impact.

Building on MPT, this methodology embeds 
sustainability into the optimization process by incorporating 
the sustainability index into the Markowitz model. The 
result is a more comprehensive approach to portfolio 
management that addresses both profitability and 
climate-related risks, ensuring that investments align with 
long-term sustainability goals while maintaining robust 
financial performance.

The practical implementation of this approach 
begins by defining a chromosomal representation of 
potential solutions, where each chromosome represents 
a portfolio of assets encoded as a vector of investment 
weights. For a portfolio consisting of N different assets, a 
chromosome is represented by a vector W = (w1, w2, ..., 
wn), where W is the chromosome and wi is the weight 
assigned to the asset i in the portfolio, indicating the 
fraction of total capital invested in that asset. The weights 
within the chromosome must sum to 1, as per Equation 4, 
which is one of the fundamental constraints of Markowitz’s 
portfolio theory, also ensuring the portfolio satisfies the 
investor’s minimum return requirement (Equation 5).

These chromosomes, also referred to as individuals, 
form the initial population. For this population, 10 companies 
are selected from the IBEX 35 stock market index. The 
selected companies are Indra, Acciona, Inmobiliaria Colonial, 
Iberdrola, Repsol, Telefónica, Sacyr, Bankinter, Endesa and 
Naturgy, identified by their ticker symbols: IDR.MC, ANA.
MC, COL.MC, IBE.MC, REP.MC, TEF.MC, SCYR.MC, 

BKT.MC, ELE.MC, and NTGY.MC.1 Each chromosome 
is scored based on a fitness function that integrates climate 
risk metrics and the expected return of the portfolio. This 
function penalizes portfolios that fail to meet the investor’s 
predetermined minimum profitability requirements, ensuring 
that only viable solutions that balance profitability and 
sustainability are selected for further optimization.

( )1 2, ,..., nMaximizeSp f w w w=   (3)

Subject to:

1
1

N
i

i
w

=
∑ =  (4)

1

 
N

i i min
i

w r R


  (5)

To define the metrics, LeGuenedal and Roncalli 
(2022) propose introducing a new measure to evaluate the 
risk of climate change in asset portfolios. For this purpose, 
Ci is considered as a climate metric for asset i. These climate 
metrics are treated as linear measures (Equation 6):

1

 
N

i i
i

C w C


  (6)

With the selected metrics of CO2e emissions 
and carbon intensity established, the constraints can be 
adjusted as follows (Equations 7 and 8):

1

     
N

i i max
i

w C C

     (7)

1

     
N

i i max
i

w CI CI

   (8)

This concludes with the formulation of the 
sustainability index, which we aim to maximize (Equation 9).

1

 
N

p i
i ii

MaxS w
C CI
 



 
   

 
    (9)

where n is the number of assets in the portfolio, wi is the 
weight of asset i in the portfolio, CEi represents the GHG 

1 The data required for this study, including daily closing prices, 
are sourced from Refinitiv Workspace. This platform provides a 
robust financial and sustainability database, including detailed 
reports on GHG emissions and other ESG indicators.
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emissions of asset i, and CIi denotes the carbon intensity 
of asset i. The coefficients α and β are used to adjust for the 
relative importance of emissions versus carbon intensity. 
Finally, the inverse of the metrics is calculated to maximize 
Sp, thereby encouraging the inclusion of assets with the 
lowest CO2 emissions and intensity.

3.3 integrating the modified optimization 
model into the genetic algorithm

Integrating the optimization problem of an 
investment portfolio that maximizes sustainability under 
climate constraints while ensuring a minimum expected 
return into a genetic algorithm (GA) requires adapting 
the problem to the structure and operations of GAs. GAs, 
inspired by the processes of natural and genetic selection, 
offer a robust and flexible approach to exploring complex 
solution spaces (Valencia, 1997).

Applying GAs to this modified portfolio optimization 
model addresses the complexity of balancing multiple 
objectives, specifically return, risk, and sustainability. 
In this framework, sustainability is evaluated using the 
index defined in the previous section, which is weighted 
according to the allocation of assets in the portfolio. The 
algorithm ensures that the portfolio meets the investor’s 
minimum expected return by applying penalties if the 
return falls below the threshold, thereby reducing the 
fitness of suboptimal solutions.

In this context, each individual (or chromosome) 
in the GA represents a vector of weights W corresponding 
to the asset distribution in the investment portfolio. 
The fitness function f(W), which is used to evaluate the 
effectiveness of each portfolio, can be formulated as 
follows (Equation 10):

min
1 1

( ) max 0,
N N

i i i
i ii i

f W w R w r
c CI
α βλ ρ
ε= =

    
 = ∑ + − ∗ − ∑          

 
(10)

By substituting Equation 9, the latter equation 
can be simplified to Equation 11:

 
1

*max 0,  
N

p min i i
i

f W S R w r 


 
 

   
 
 

  (11)

where λ is a scale factor that adjusts the relative importance 
of sustainability in the fitness function, and ρ is the penalty 
factor applied if the portfolio’s return falls below the minimum 
threshold. The values of α and β determine whether the 

optimization prioritizes total emissions reduction, carbon 
efficiency per unit of revenue, or a balanced approach 
between the two. In this study, we choose to set them to 
the unit (α=1 and β=1) to give equal importance to both 
metrics, ensuring a balanced assessment of sustainability 
performance. This choice aligns with prior research on 
ESG-driven portfolio selection, which suggests that 
giving equal weight to different sustainability criteria 
leads to more diversified and stable portfolio allocations 
(Le Guenedal & Roncalli, 2022; Fang et al., 2019). From 
a financial perspective, treating both measures equally 
prevents overconcentration in firms with low absolute 
emissions, while also taking into account their relative 
environmental efficiency.

To assess the impact of different weightings, we 
conducted a sensitivity analysis by systematically varying 
𝛼 and β. We tested three alternative scenarios:

1 Emissions-focused scenario (α=2, β=1). Greater emphasis 
on total GHG emissions reduction.

2. Intensity-focused scenario (α=1, β=2). More emphasis 
on carbon efficiency per unit of revenue.

3. Balanced scenario (α=1.5, β=1.5). Slightly favors 
companies with high ESG transparency.

The results indicate that when α>β, the portfolio 
favors companies with low absolute emissions, often 
leading to a higher concentration in financial and tech 
companies. Conversely, when β>α, the model shifts 
towards companies with low emissions relative to their 
economic output, favoring firms in the utilities and energy 
sectors that have adopted carbon reduction strategies. 
The balanced scenario (α=1.5, β=1.5) produced a more 
diversified portfolio that reduced both volatility and 
carbon exposure while maintaining competitive returns.

These findings highlight the importance of 
properly selecting α and β based on investor priorities. 
If the goal is to maximize absolute carbon reduction, a 
higher α is preferable. However, for investors seeking 
financial performance with improved carbon efficiency, 
increasing β will provide better results. By default, the equal 
weighting (α=1, β=1) is retained as a neutral, balanced 
configuration that provides a fair trade-off between 
financial and environmental performance.

Once the variables of the sustainability index have 
been defined, we classify investors into three different 
types based on their level of commitment to sustainable 
portfolios: sustainable, balanced, and profitable investors 



 9

R. Bras. Gest. Neg., São Paulo, v.27, n.2,  2025

Sustainability and genetic algorithms: An approach to asset portfolio optimization

(see Table 2). Each type of investor reflects a different 
balance between maximizing sustainability and prioritizing 
financial performance. In addition, a fourth type of investor 
is included that is characterized by not considering the 
sustainability index in their decision making. This type of 
investor focuses solely on financial profitability, ignoring 
sustainability criteria.

As shown in the table, each type of investor is 
associated with different values of λ and ρ, which represent 
their respective weights for sustainability and return 
constraints. Sustainable investors prioritize sustainability 
(λ = 10), while profitable investors place greater emphasis 
on financial returns (ρ=10). Balanced investors try to find 
a middle ground between the two.

Over successive generations, chromosomes are 
selected for reproduction based on their fitness, with more 
fit chromosomes having a higher chance of being chosen. 
In this study, we employ roulette selection (also known 
as Monte Carlo selection), a method commonly used 
in genetic algorithms to select individuals for the next 
generation or crossover (Velasco, 2022). In roulette selection, 
each chromosome is assigned a portion of the “roulette 
wheel” based on its fitness level, with fitter chromosomes 
occupying larger portions. A random number between 
0 and 1 is generated, and the corresponding chromosome 
is selected by accumulating the fitness segments until the 
sum exceeds the randomly generated value. Chromosomes 
with higher fitness are therefore more likely to be selected 
for reproduction.

Although simple and effective, roulette selection 
can be computationally inefficient for large populations. 
However, given the population size in this study, it is a 
suitable choice. This method integrates well with the 
weighting of assets in the portfolio and is straightforward 
to implement in Python, as described in the following 
section (Blickle & Thiele, 1996).

Once selected, parent chromosomes undergo 
crossover and mutation to produce offspring for the 

next generation. Crossover combines genetic material 
from two parent chromosomes to produce offspring that 
ideally inherit beneficial traits from both parents. In this 
study, we use the 1-point crossover technique, which 
involves selecting a random crossover point within the 
chromosome and swapping the tail segments between 
two parents to generate new offspring. This method 
encourages solution diversity while maintaining genetic 
consistency. The probability of crossover is set to 0.6, 
a balance that allows sufficient recombination without 
excessive disruption. The crossover probability needs to 
find a balance between exploration (diversity of solutions) 
and exploitation (refinement of good solutions). Prior 
research suggests that values in the range of 0.6 to 0.8 are 
effective in financial applications because they allow 
sufficient recombination without excessive disruption 
of high-performing solutions (Sosa et al., 2014; Blickle 
& Thiele, 1996). Lower values could slow convergence, 
while excessively high probabilities might lead to premature 
convergence and loss of diversity (Holland, 1992).

After crossover, mutation is applied to introduce 
random changes to one or more genes in the chromosome, 
ensuring that the genetic algorithm explores a wider 
solution space and avoids premature convergence to local 
optima. Mutation helps to maintain diversity within the 
population. In this study, the mutation probability (Pm) 
is set to 0.01, a commonly used value that introduces 
variability without overwhelming the existing structure of 
the solutions. In financial portfolio optimization, mutation 
rates between 0.01 and 0.05 are commonly employed 
to maintain diversity without excessively disrupting the 
evolving solutions (Deb, 2001; Valencia, 1997). A higher 
mutation rate might lead to excessive randomness, reducing 
the efficiency of convergence, while lower values could 
result in stagnation around local optima. The choice of 
𝑃𝑚=0.01 aligns with studies in evolutionary algorithms 
applied to financial modeling, which show that such a 
value effectively balances exploration and convergence 
(Sosa et al., 2014; Velasco, 2022).

This iterative process of selection, crossover, 
and mutation enables the population to evolve towards 
increasingly optimal solutions. Retention of the best 
individuals from each generation ensures that solutions 
gradually converge towards the global optimum, while 
maintaining enough diversity to prevent stagnation in 
suboptimal areas of the solution space.

The first step in the analysis is to calculate the 
daily continuous returns for each asset. This is done by 

Table 2 
Classification of investors depending on 
their level of commitment to a sustainable 
portfolio

Sustainable Balanced Profitable No-Sp
10λ = 5λ = 5λ = 0λ =

0ρ = 5ρ =   10ρ =   10ρ =
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taking the natural logarithm of the ratio of the closing 
prices of consecutive days, which allows the calculation 
of the average daily return for the IBEX 35 index. This 
average daily return serves as a key reference point for 
constraining the fitness function of the genetic algorithm 
used in subsequent analyses. This return, defined as the 
minimum return (Rmin), is calculated to be 0.0621% 
per day, which annualizes to 15.65%.

1

t
i i

t

Price
DailyContinousReturn R ln

Price −

 
= =   

 
  (12)

Once the daily returns are calculated, the expected 
return, standard deviation, and variance for each asset 
are determined and then annualized. These data are then 
employed to construct the covariance matrix using Excel’s 
data analysis tools.

The study employs two different methods to 
determine optimal portfolios. The first method, referred to 
as the traditional method, constructs a control portfolio 
using the classical mean-variance optimization process, 
which does not incorporate sustainability indices. In this 
approach, portfolio weights are randomly generated using 
Excel’s RANDARRAY function. The Excel Forecast module’s 
Data Table tool is employed to simulate 1,500 iterations, 
allowing for the construction of the efficient frontier and 
the capital allocation line (CAL). The performance of the 
portfolios is evaluated by identifying the optimal portfolio 
that maximizes the modified Sharpe ratio, which in this 
context excludes the risk-free return.

The second method employs a genetic algorithm 
designed to optimize the portfolio by balancing the 
objectives of profitability and sustainability. The genetic 
algorithm is implemented using the DEAP library in 
Python, leveraging the computational power of libraries 
such as NUMPY, DEAP, and PANDAS for mathematical 
calculations and algorithmic processing. The fitness 
function of the genetic algorithm integrates parameters 
such as return, volatility, and sustainability metrics, 
with additional parameters such as lambda and rho to 
represent different investor preferences. The algorithm is 
run for 1,500 iterations, generating optimal portfolios 
for five different types of investors, including those with 
sustainable and profitability-oriented objectives. The 
results of this approach include portfolios that maximize 
both the Sharpe ratio and the sustainability index, 
providing a comprehensive assessment of performance. 
The efficient frontier of the portfolios is visualized using 

three-dimensional scatterplots in MATLAB that illustrate 
the complex relationships among return, volatility, and 
sustainability metrics.

The development of the genetic algorithm 
addressed limitations in the original algorithm design, 
particularly in the normalization of portfolio weights to 
satisfy the constraints of the Markowitz model.

In addition to genetic algorithms, the inclusion 
of other optimization techniques such as Particle 
Swarm Optimization (PSO) and Simulated Annealing 
(SA) can provide a more comprehensive comparison of 
algorithmic performance and enhance the robustness 
of the solution-finding process. PSO is an optimization 
technique inspired by the social behavior of birds and 
fish. It involves particles (potential solutions) moving 
through the search space, influenced by both their own 
best position and that of their neighbors. PSO is effective 
for continuous optimization problems and typically 
converges quickly to optimal or near-optimal solutions. 
Compared to genetic algorithms, PSO is often faster for 
problems with fewer parameters and continuous spaces, 
while genetic algorithms are better suited for complex, 
combinatorial problems. SA is inspired by the annealing 
process in metallurgy, where a material is heated and 
then slowly cooled to minimize energy. In optimization, 
SA explores the solution space by accepting both better 
and worse solutions with a decreasing probability over 
time. This helps the algorithm escape local optima and 
find global solutions. SA is especially useful for complex, 
non-linear, or multi-modal problems where identifying 
the global optimum is challenging (Sexton et al., 1999).

By comparing the efficiency and effectiveness of 
these algorithms, it is possible to gain a broader perspective 
on their strengths and weaknesses, ultimately leading to a 
more informed decision about the best optimization method 
for a given problem. Testing a combination of algorithms, 
or hybrid approaches, could also be explored to capitalize 
on the strengths of each method (Supplementary Data 7 
– Appendix A and Supplementary Data 8 – Appendix B).

4 Results

The findings of this study, based on both 
traditional mean-variance optimization and genetic 
algorithm techniques, provide important insights into 
how the inclusion of sustainability considerations affects 
asset portfolio management. This section further explores 
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the dominance at the asset level and explains why certain 
companies receive higher allocations in optimized portfolios.

Table 3 shows the optimal portfolio composition 
obtained through the traditional mean-variance optimization 
after 1,500 iterations. The allocations reveal a preference 
for certain assets, notably Indra (17.33%), Sacyr (17.05%), 
Endesa (15.41%), and Naturgy (16.89%), indicating that 
these companies were identified as offering a favorable 
balance between risk and return. In contrast, Acciona 
(1.03%) and Inmobiliaria Colonial (0.10%) received 
significantly lower allocations, indicating that their risk-
return profiles were less attractive in this model. This 
distribution implies that the optimization process, when 
focused solely on traditional financial performance metrics, 
results in a portfolio concentrated in a few key assets with 
perceived strong financial characteristics.

Figure 1 illustrates the performance of this portfolio 
on the efficient frontier, with a total return of 15.77%, 
volatility of 11.73%, and a Sharpe ratio of 134.51%. 
The figure effectively shows the risk-return trade-offs and 
demonstrates that the traditional optimization method 
emphasizes maximizing returns for a given level of risk 
without considering sustainability factors. Indra, for instance, 
benefits from stable government contracts that reduce its 
exposure to market fluctuations, making it a preferred asset 
for profit-driven portfolios. Similarly, Sacyr, which operates 
in the infrastructure sector, demonstrates resilience through 
long-term projects and steady revenue growth, increasing 
its attractiveness for risk-adjusted return optimization. 
Meanwhile, Naturgy and Endesa, both energy firms with 
stable revenues supported by government incentives for a 
sustainable energy transition, emerge as highly preferred 
choices in traditional portfolio optimization.

The concentration of the portfolio in a few 
key assets aligns with the intention to increase return 

relative to risk, which is a hallmark of mean-variance 
optimization.

Unlike the traditional approach, the genetic 
algorithm method allowed for the simulation of portfolios 
tailored to five different investor profiles described in 
Section 3.3. For each investor type, the algorithm produced 
two portfolio variants: one optimized for the Sharpe ratio 
(referred to as the most profitable portfolio) and another 
that maximized the sustainability index (referred to as the 
most sustainable portfolio).

Focusing on the sustainable investor, defined by 
the parameters λ=10 and ρ=0, the resulting most profitable 
portfolio (SUST-SR) is relatively balanced but shows a 
significant concentration in Bankinter (27.36%), as shown 
in Table 4. This allocation led to a return of 12.12%, 
volatility of 14.02%, a Sharpe ratio of 86.46%, and a 
sustainability index of 41.50% (see Table 5). The results 
suggest a moderate approach to balancing sustainability 
and profitability, as evidenced by the diversity of the asset 
allocation and the relatively high risk-adjusted return. 
This is driven by Bankinter’s low carbon intensity and 
high ESG transparency. The financial sector generally has 
a lower carbon footprint compared to industrial sectors, 

Table 3 
 Optimal asset portfolio composition

iDR.Mc ANA.Mc cOl.Mc iBe.Mc ReP.Mc teF.Mc ScYR.Mc BKt.Mc ele.Mc NtGY.Mc
Traditional Method 17.33% 1.03% 0.10% 14.01% 2.71% 11.19% 17.05% 4.27% 15.41% 16.89%

Table 4 
 Optimal asset portfolio composition - for each investor type and method

iDR.Mc ANA.Mc cOl.Mc iBe.Mc ReP.Mc teF.Mc ScYR.Mc BKt.Mc ele.Mc NtGY.Mc
SUST-SR 9.37% 0.00% 5.98% 10.20% 0.26% 13.49% 20.68% 27.36% 4.26% 8.42%
SUST-SI 0.61% 3.98% 0.16% 2.70% 4.69% 10.86% 1.02% 67.72% 0.07% 8.19%

Table 5 
Sustainable investor asset portfolio indicators

indicators
Most profitable 

portfolio  
(max. Sharpe)

Most 
sustainable 
portfolio  
(max. Sp)

Profitability (Rp) 12.12% 0.66%
Volatility (σp) 14.02% 20.48%
Sharpe Ratio 86.48% 3.24%

Sustainability Index (Sp) 41.50% 95.79%
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and Bankinter’s strong ESG disclosure practices align 
well with sustainability-focused optimization models.

However, the most sustainable portfolio for this 
investor profile (SUST-SI) has a significantly different 
asset distribution, heavily favoring Bankinter with an 
allocation of 67.72%. This shift towards Bankinter results 
in a significant increase in the sustainability index to 
95.79%, reflecting the portfolio’s strong sustainability 
orientation. However, this comes at the expense of financial 

performance, as the portfolio’s return drops significantly 
to 0.66%, with a corresponding increase in volatility to 
20.48% (see Figure 2). Figure 3 illustrates the trade-off 
between maximizing sustainability and achieving financial 
stability (Supplementary Data 3 – Sustainable Portfolio).

For the balanced investor, characterized by the 
parameters λ=5 and ρ=5, the genetic algorithm achieves 
a balance between profitability and sustainability, 
resulting in a portfolio with a diversified asset allocation. 

Figure 1. Traditional method

Figure 2. Sustainable investor
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The most profitable portfolio (EQY-SR), as shown in 
Table 6, has a notable emphasis on Indra (41.32%) and 
Sacyr (22.02%), suggesting that these assets represent 
an optimal trade-off between return and sustainability 
within this investor profile. This portfolio yields a return 
of 20.76%, with a relatively low volatility of 13.05%, 
giving a Sharpe ratio of 159.12% (see Table 7). The 
sustainability index for this portfolio is 5.70%, indicating 
that while sustainability is a consideration, it does not 
dominate the portfolio composition (Supplementary 
Data 1 – Balanced Portfolio).

In contrast, the most sustainable portfolio for the 
balanced investor (EQU-SI) has a more varied distribution, 
with Bankinter (27.89%), Indra (30.99%), and Sacyr 
(24.22%) having the largest weights. This configuration 
results in a sustainability index of 20.56%, significantly 
higher than that of the most profitable portfolio. However, 
this shift towards sustainability has an impact on financial 
performance: the portfolio achieves a lower return of 
15.50%, with an increased volatility of 14.97%, resulting 
in a Sharpe ratio of 103.55%.

Figures 4 and 5 illustrate these different results. 
Figure 4, which shows the most profitable portfolio, 
highlights its strong financial performance and relatively 
modest sustainability orientation. Figure 5, showing the 
most sustainable portfolio, highlights a more balanced 
asset allocation that aims to maximize sustainability while 
maintaining reasonable levels of profitability and risk. 
The trade-off between maximizing returns and improving 
the sustainability index is evident, as the equilibrium 
approach maintains a notable balance between financial 
performance and environmental considerations.

These findings suggest that an equilibrium 
approach, which balances profitability and sustainability 
objectives, can produce a portfolio with favorable risk-
adjusted returns while also enhancing its sustainability 
profile. Although there is a modest trade-off in financial 
return and increased volatility when sustainability 
is prioritized, the balanced investor achieves a more 
comprehensive outcome that aligns with both financial 
goals and sustainability principles.

For the profitable investor, defined by the 
parameters λ=1 and ρ=10, the genetic algorithm focuses on 
maximizing financial returns, resulting in a concentrated 
asset distribution in the most profitable portfolio (PROF-
I-SR). As shown in Table 8, this portfolio is heavily 
weighted in Indra (36.75%) and Naturgy (22.64%), 
reflecting the favorable financial performance and risk-
return characteristics of these assets for this investor 
type. Consequently, the portfolio achieves a high return 
of 19.14% with a relatively low volatility of 12.29%, 
resulting in an impressive Sharpe ratio of 155.68% (see 
Table 9). The sustainability index of 3.21% indicates a 
minimal emphasis on sustainability in this portfolio, 
aligning with the investor’s primary focus on profitability.

Table 6  
Optimal asset portfolio composition - for each investor type and method

iDR.Mc ANA.Mc cOl.Mc iBe.Mc ReP.Mc teF.Mc ScYR.Mc BKt.Mc ele.Mc NtGY.Mc
EQU-SR 41.32% 0.42% 1.01% 0.00% 1.20% 0.64% 22.02% 4.67% 13.06% 15.66%
EQU- SI 30.99% 1.83% 4.09% 0.00% 0.00% 0.00% 24.22% 27.89% 7.40% 3.59%

Table 7 
Balanced investor’s asset portfolio indicators

indicators
Most profitable 

portfolio  
(max. Sharpe)

Most 
sustainable 
portfolio  
(max. Sp)

Profitability (Rp) 20.76% 15.50%
Volatility (σp) 13.05% 14.97%
Sharpe Ratio 159.12% 103.55%
Sustainability Index (Sp) 5.70% 20.56%

Figure 3. Sustainable portfolio
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In contrast, the most sustainable portfolio for the 
profitable investor (PROF-I-SI) has a more diversified asset 
allocation, with significant holdings in Sacyr (26.32%) 
and Bankinter (27.49%), as shown in Table 8. This shift 
raises the portfolio’s sustainability index to 21.25%, a 
significant improvement compared to the profitability-
maximizing portfolio. However, there is a trade-off in 
financial performance: the return decreases to 15.92%, 
and volatility rises to 14.98%, resulting in a Sharpe ratio 
of 106.29%. These outcomes reflect a clear compromise 
between maximizing returns and sustainability, with a 
more moderate approach to profitability (Supplementary 
Data 5 – Profitable Portfolio).

Figure 6, showing the most profitable portfolio, 
highlights the high return and relatively stable risk profile, 
consistent with the investor’s profit-driven approach. 
Figure 7, which illustrates the most sustainable portfolio, 
shows the recalibration towards a more balanced but less 
financially optimized structure, reflecting the impact of 
sustainability integration on the risk-return profile.

The results confirm the inherent trade-offs between 
profitability and sustainability: prioritizing financial 
returns generally reduces the sustainability index, while 

integrating more sustainable assets requires a modest 
sacrifice in both return and risk-adjusted performance.

For the no-sustainability investor, characterized 
by the parameters λ=0 and ρ=10, the genetic algorithm 
focuses entirely on maximizing profitability without taking 
sustainability into account. As shown in Table 10, this 
approach results in a portfolio concentrated in assets such 
as Indra (34.40%) and Sacyr (20.79%), with significant 
allocations also to Naturgy (17.89%) and Endesa (10.43%). 
This emphasis on traditional financial performance results 
in a return of 19.54%, volatility of 12.35%, and a Sharpe 
ratio of 158.21% (Supplementary Data 4 – No Sp Portfolio).

Table 8  
Optimal asset portfolio composition - for each of investor type and method

iDR.Mc ANA.Mc cOl.Mc iBe.Mc ReP.Mc teF.Mc ScYR.Mc BKt.Mc ele.Mc NtGY.Mc
PROF-I-SR 36.75% 1.31% 0.00% 9.52% 0.06% 15.51% 11.80% 0.17% 2.24% 22.64%
PROF-I-SI 33.58% 2.24% 1.01% 5.29% 0.00% 1.59% 26.32% 27.49% 2.47% 0.00%

Table 9 
Profitable investor’s asset portfolio indicators

indicators
Most profitable 

portfolio  
(max. Sharpe)

Most 
sustainable 
portfolio  
(max. Sp)

Profitability (Rp) 19.14% 15.92%
Volatility (σp) 12.29% 14.98%
Sharpe Ratio 155.68% 106.29%

Sustainability Index (Sp) 3.21% 21.25%

Figure 4. Balanced investor
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The control configuration of the genetic 
algorithm, with both λ and ρ set to zero, serves as a 
baseline for comparing the effects of sustainability 
considerations. This setup yields a portfolio similar 
to that generated by the traditional mean-variance 

optimization, with a return of 15.16%, volatility of 
11.97%, and a Sharpe ratio of 126.65%, as shown 
in Table 10. The control portfolio is more diversified 
compared to the no-sustainability investor’s portfolio, 
with weights more evenly distributed across assets. This 
configuration confirms the efficiency of the genetic 
algorithm in replicating traditional optimization 
results, while serving as a benchmark for assessing the 
influence of sustainability on portfolio composition 
(Supplementary Data 2 – GA Control Portfolio).

Figure 8 shows strong financial returns and 
relatively low risk, achieved without any sustainability 
constraints. In contrast, the control portfolio (Figure 9) 
emphasizes a balanced risk-return profile that closely 
mirrors traditional optimization results.

A critical observation from the optimized 
portfolios is the significant concentration of assets in 
certain stocks, particularly in the portfolios with a strong 
sustainability focus. For example, the most sustainable 
portfolio (SUST-SI) allocates as much as 67.72% to Figure 5. Balanced portfolio

Figure 6. Profitable investor

Table 10 
Optimal asset portfolio composition - for each investor type and method

iDR.Mc ANA.Mc cOl.Mc iBe.Mc ReP.Mc teF.Mc cYR.Mc BKt.Mc ele.Mc NtGY.Mc
No-SUS-I 34.40% 0.00% 1.06% 6.33% 3.37% 3.46% 20.79% 2.27% 10.43% 17.89%
Control 21.21% 0.08% 6.87% 1.91% 10.27% 13.33% 12.81% 0.63% 15.63% 17.25%
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Bankinter, suggesting that stringent ESG constraints may 
lead to an over-reliance on a limited number of stocks. 
This concentration could pose a potential risk to portfolio 
diversification, as sustainability-focused strategies might 
inadvertently limit exposure to a broader range of sectors 
or asset classes.

On the other hand, the balanced investor (EQU-
SI) and profitable investor (PROF-I-SI) portfolios have a 
more diversified allocation and strike a balance between 
financial performance and ESG integration. The control 

portfolio, generated through traditional mean-variance 
optimization, also reflects a broader distribution of assets, 
reinforcing the tendency of financial optimization models 
to favor concentration in high-performing companies. 
These observations underscore the delicate balance between 
concentration and diversification, with implications for investors 
seeking to align financial returns with sustainability goals.

To assess the robustness of the asset dominance, 
a sensitivity analysis was conducted by adjusting key 
parameters, such as ESG weightings, risk constraints, 
and sector-specific adjustments. Increasing the ESG 
weightings led to a concentration of assets in companies 
such as Bankinter, Endesa, and Iberdrola, which are 
characterized by a low carbon footprint and strong 
sustainability practices. Conversely, relaxing the risk 
constraints allowed for greater inclusion of high-return 
assets such as Indra and Sacyr, enhancing financial 
performance but reducing the sustainability index. These 
findings underscore the importance of carefully calibrating 
sustainability constraints to avoid overconcentration in 
specific stocks while ensuring that the portfolio remains 
financially viable.

Adjusting the sector-specific caps also led to a 
more balanced allocation, reducing the over-reliance on Figure 7. Profitable portfolio

Figure 8. No-sustainability investor
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financial and energy stocks. This finding underscores the 
importance of considering sector diversification within 
optimization models, particularly for investors seeking to 
achieve a more holistic and sustainable portfolio.

This study highlights the trade-offs between 
financial returns and sustainability. The balanced investor’s 
Sharpe-maximizing portfolio achieves the best risk-
adjusted return (159.12%) with moderate sustainability. 
The no-sustainability investor performs similarly well 
in terms of profitability, but ignores sustainability. 
The sustainable investor’s portfolios, particularly when 
maximizing sustainability, experience significant reductions 
in returns and increased volatility, underscoring the cost 
of prioritizing sustainability. The profitable investor 
balances profitability with some sustainability, but like 
the balanced investor, favors higher financial returns. The 
control and traditional portfolios serve as baselines for 
comparison, reflecting traditional financial optimization 
without sustainability integration.

These results suggest that while integrating 
sustainability into portfolio optimization may initially 
reduce returns, a strategically balanced approach can 
lead to favorable outcomes that effectively align financial 
performance with environmental and social responsibility 
objectives.

5 Discussion

Since sustainability includes the economic, social, 
and environmental elements necessary for long-term 
resilience, it is critical to business and finance. Businesses 
can ensure ongoing operations by adopting sustainable 
practices that help them better manage risks associated 
with resource scarcity and climate change. Additionally, 
businesses must adhere to stringent laws in order to avoid 
penalties due to the increasing global legislation aimed at 
minimizing environmental impacts (García Lupiola, 2022). 
This is particularly relevant as more concerned consumers 
favor goods and services that are ethically and sustainably 
produced, which can give businesses a competitive edge 
in places where corporate social responsibility is highly 
valued (Acedo Rey, 2019).

The study examines how environmental and 
social responsibility influences financial decision making, 
specifically in asset portfolio optimization. It compares 
two methods: the traditional approach and the genetic 
algorithm (GA), with the central question being whether 
maximizing sustainability reduces profitability. After 
verifying the functionality of the GA, it is confirmed that 
it produces similar results to the traditional method, but 
with greater variability, reflecting market randomness. 

Figure 9. Control using GA
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Furthermore, when the GA is optimized without considering 
the sustainability index, the return is 4% higher, with a 
slight increase in volatility. The GA proves to be more 
profitable than the traditional method, while keeping 
returns above the IBEX 35 benchmark.

When sustainability is the top priority, the most 
successful portfolio belongs to the return-seeking investor, 
with a return of 15.92% and volatility of 14.98%. On 
the other hand, the least effective portfolio is that of the 
sustainable investor, with a return of 0.66% and the 
highest volatility at 20.48%. The balanced investor’s 
portfolio is quite similar to that of the profitable investor, 
but with slightly lower performance. The main difference 
between the portfolios is the sustainability index and its 
weighting: 95.29% for the sustainable investor, 20.56% 
for the balanced investor, and 21.25% for the profitable 
investor. This helps answer the central question of the 
study: by maximizing sustainability, the sustainable 
investor’s portfolio sees a drastic reduction in returns, 
highlighting a sacrifice in profitability.

When examining the portfolios of investors who 
optimize the Sharpe ratio, the balanced investor’s portfolio 
performs best, outperforming all others in the study. It 
delivers a return of 20.76% with volatility of 13.05%, 
making it the optimal choice for those who want to 
incorporate sustainability without compromising returns, 
with a sustainability index of 5.70%. The sustainable 
investor’s portfolio shows a return of 12.12%, while 
the profitable investor achieves 19.14%. Additionally, 
as the weight given to sustainability in the GA fitness 
function decreases and the penalty increases, volatility 
tends to decrease.

The results indicate that an investor who chooses 
a portfolio that is balanced between sustainability and 
profitability achieves the best performance, outperforming 
the traditional Markowitz method. However, it is important 
to note that portfolios from the Sp method are always 
more volatile than the traditional or control portfolios. 
Therefore, investors must have different risk tolerance 
and return expectations, as the level of sustainability 
they wish to integrate may require them to accept lower 
initial returns or deal with higher volatility compared to 
traditional portfolios.

The study shows that incorporating sustainability 
criteria into asset portfolio management has a significant 
impact on both profitability and volatility. While 
maximizing sustainability can reduce short-term returns, 
as seen in the sustainable investor’s portfolio, a balanced 

approach, like that of the balanced investor, can yield 
superior performance and meet environmental and social 
responsibility goals. These findings underscore the need for 
investors to carefully balance their sustainability objectives 
with profitability and risk tolerance.

6 conclusion

Integrating sustainability into finance has become 
crucial, affecting economic, social, and environmental 
aspects that drive resilience and competitiveness. Companies 
with strong sustainable practices can effectively manage 
climate-related risks and benefit from compliance with 
emerging regulations and consumer demand for ethical 
products.

This study examines how prioritizing sustainability 
in asset portfolio management impacts profitability. 
By comparing traditional mean-variance optimization 
with genetic algorithm approaches, it explores whether 
sustainability integration comes at the expense of returns. 
The control portfolios validate the reliability of the 
genetic algorithm by closely aligning with traditional 
optimization results.

The analysis shows that portfolios emphasizing 
sustainability – particularly for sustainable investors – face 
lower returns and higher volatility, highlighting the costs of 
prioritizing environmental and social goals. However, the 
balanced investor, who balances both financial performance 
and sustainability, achieves superior risk-adjusted returns 
(Sharpe ratio of 159.12%) compared to other profiles. 
While profitable investors enjoy high returns with limited 
sustainability considerations, balanced portfolios can 
achieve favorable results, showing that sustainability and 
profitability are not mutually exclusive.

These findings suggest that investors can achieve 
a well-calibrated balance between profitability and 
sustainability that enhances long-term stability. However, 
integrating sustainability may require accepting lower 
short-term returns or increased volatility compared to 
traditional strategies. Investors should align their risk 
preferences with their sustainability goals, as a balanced 
approach can reconcile financial returns with social 
responsibility.
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